

Welcome to Storm’s documentation!

Contents:

	Tutorial
	Importing

	Basic definition

	Creating a database and the store

	Creating an object

	The store of an object

	Finding an object

	Caching behavior

	Flushing

	Changing objects with the Store

	Committing

	Rolling back

	Constructors

	References and subclassing

	Many-to-one reference sets

	Many-to-many reference sets and composed keys

	Joins

	Sub-selects

	Ordering and limiting results

	Multiple types with one query

	The Storm base class

	Loading hook

	Executing expressions

	Auto-reloading values

	Expression values

	Aliases

	Debugging

	Much more!

	Infoheritance
	Defining a sample model

	The infoheritance pattern

	Registering info classes

	Creating info classes

	Retrieving info classes

	In-memory info objects

	Zope integration
	Getting stores

	Committing transactions

	Aborting transactions

	ZCML

	Security Wrappers

	ResultSet interfaces

	API
	Locals

	Store

	Defining tables and columns

	Expressions

	Databases

	Hooks and events

	Miscellaneous

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Importing

Let’s start by importing some names into the namespace.

>>> from storm.locals import *

Basic definition

Now we define a type with some properties describing the information
we’re about to map.

>>> class Person(object):
... __storm_table__ = "person"
... id = Int(primary=True)
... name = Unicode()

Notice that this has no Storm-defined base class or constructor.

Creating a database and the store

We still don’t have anyone to talk to, so let’s define an in-memory
SQLite database to play with, and a store using that database.

>>> database = create_database("sqlite:")
>>> store = Store(database)

Three databases are supported at the moment: SQLite, MySQL, and PostgreSQL.
The parameter passed to create_database() is an
URI, as follows:

database = create_database(
"scheme://username:password@hostname:port/database_name")

The scheme may be sqlite, mysql, or postgres.

Now we have to create the table that will actually hold the data
for our class.

>>> store.execute("CREATE TABLE person "
... "(id INTEGER PRIMARY KEY, name VARCHAR)")
<storm.databases.sqlite.SQLiteResult object at 0x...>

We got a result back, but we don’t care about it for now. We could also
use noresult=True to avoid the result entirely.

Creating an object

Let’s create an object of the defined class.

>>> joe = Person()
>>> joe.name = u"Joe Johnes"

>>> print(joe.id)
None
>>> print(joe.name)
Joe Johnes

So far this object has no connection to a database. Let’s add it to the
store we’ve created above.

>>> store.add(joe)
<...Person object at 0x...>

>>> print(joe.id)
None
>>> print(joe.name)
Joe Johnes

Notice that the object wasn’t changed, even after being added to the
store. That’s because it wasn’t flushed yet.

The store of an object

Once an object is added to a store, or retrieved from a store, its
relation to that store is known. We can easily verify which store
an object is bound.

>>> Store.of(joe) is store
True

>>> Store.of(Person()) is None
True

Finding an object

Now, what would happen if we actually asked the store to give us
the person named “Joe Johnes”?

>>> person = store.find(Person, Person.name == u"Joe Johnes").one()

>>> print(person.id)
1
>>> print(person.name)
Joe Johnes

The person is there! Yeah, ok, you were expecting it. :-)

We can also retrieve the object using its primary key.

>>> print(store.get(Person, 1).name)
Joe Johnes

Caching behavior

One interesting thing is that this person is actually Joe, right? We’ve
just added this object, so there’s only one Joe, why would there be
two different objects? There isn’t.

>>> person is joe
True

What’s going on behind the scenes is that each store has an object
cache. When an object is linked to a store, it will be cached by
the store for as long as there’s a reference to the object somewhere,
or while the object is dirty (has unflushed changes).

Storm ensures that at least a certain number of recently used objects
will stay in memory inside the transaction, so that frequently used
objects are not retrieved from the database too often.

Flushing

When we tried to find Joe in the database for the first time, we’ve
noticed that the id property was magically assigned. This happened
because the object was flushed implicitly so that the operation would
affect any pending changes as well.

Flushes may also happen explicitly.

>>> mary = Person()
>>> mary.name = u"Mary Margaret"
>>> store.add(mary)
<...Person object at 0x...>

>>> print(mary.id)
None
>>> print(mary.name)
Mary Margaret

>>> store.flush()
>>> print(mary.id)
2
>>> print(mary.name)
Mary Margaret

Changing objects with the Store

Besides changing objects as usual, we can also benefit from the fact
that objects are tied to a database to change them using expressions.

>>> store.find(
... Person, Person.name == u"Mary Margaret").set(name=u"Mary Maggie")
>>> print(mary.name)
Mary Maggie

This operation will touch every matching object in the database, and
also objects that are alive in memory.

Committing

Everything we’ve done so far is inside a transaction. At this point,
we can either make these changes and any pending uncommitted changes
persistent by committing them, or we can undo everything by rolling
them back.

We’ll commit them, with something as simple as

>>> store.commit()

That was straightforward. Everything is still the way it was, but now
changes are there “for real”.

Rolling back

Aborting changes is very straightforward as well.

>>> joe.name = u"Tom Thomas"

Let’s see if these changes are really being considered by Storm
and by the database.

>>> person = store.find(Person, Person.name == u"Tom Thomas").one()
>>> person is joe
True

Yes, they are. Now, for the magic step (suspense music, please).

>>> store.rollback()

Erm.. nothing happened?

Actually, something happened.. with Joe. He’s back!

>>> print(joe.id)
1
>>> print(joe.name)
Joe Johnes

Constructors

So, we’ve been working for too long with people only. Let’s introduce
a new kind of data in our model: companies. For the company, we’ll
use a constructor, just for the fun of it. It will be the simplest
company class you’ve ever seen:

>>> class Company(object):
... __storm_table__ = "company"
... id = Int(primary=True)
... name = Unicode()
...
... def __init__(self, name):
... self.name = name

Notice that the constructor parameter isn’t optional. It could be
optional, if we wanted, but our companies always have names.

Let’s add the table for it.

>>> store.execute(
... "CREATE TABLE company (id INTEGER PRIMARY KEY, name VARCHAR)",
... noresult=True)

Then, create a new company.

>>> circus = Company(u"Circus Inc.")

>>> print(circus.id)
None
>>> print(circus.name)
Circus Inc.

The id is still undefined because we haven’t flushed it. In fact,
we haven’t even added the company to the store. We’ll do
that soon. Watch out.

References and subclassing

Now we want to assign some employees to our company. Rather than
redoing the Person definition, we’ll keep it as it is, since it’s
general, and will create a new subclass of it for employees, which
include one extra field: the company id.

>>> class Employee(Person):
... __storm_table__ = "employee"
... company_id = Int()
... company = Reference(company_id, Company.id)
...
... def __init__(self, name):
... self.name = name

Pay attention to that definition for a moment. Notice that it doesn’t
define what’s already in person, and introduces the company_id,
and a company property, which is a reference to another class. It
also has a constructor, but which leaves the company alone.

As usual, we need a table. SQLite has no idea of what a foreign key is,
so we’ll not bother to define it.

>>> store.execute(
... "CREATE TABLE employee "
... "(id INTEGER PRIMARY KEY, name VARCHAR, company_id INTEGER)",
... noresult=True)

Let’s give life to Ben now.

>>> ben = store.add(Employee(u"Ben Bill"))

>>> print(ben.id)
None
>>> print(ben.name)
Ben Bill
>>> print(ben.company_id)
None

We can see that they were not flushed yet. Even then, we can say
that Bill works on Circus.

>>> ben.company = circus

>>> print(ben.company_id)
None
>>> print(ben.company.name)
Circus Inc.

Of course, we still don’t know the company id since it was not
flushed to the database yet, and we didn’t assign an id explicitly.
Storm is keeping the relationship even then.

If whatever is pending is flushed to the database (implicitly or
explicitly), objects will get their ids, and any references are
updated as well (before being flushed!).

>>> store.flush()

>>> print(ben.company_id)
1
>>> print(ben.company.name)
Circus Inc.

They’re both flushed to the database. Now, notice that the Circus
company wasn’t added to the store explicitly in any moment. Storm
will do that automatically for referenced objects, for both objects
(the referenced and the referencing one).

Let’s create another company to check something. This time we’ll
flush the store just after adding it.

>>> sweets = store.add(Company(u"Sweets Inc."))
>>> store.flush()
>>> sweets.id
2

Nice, we’ve already got the id of the new company. So, what would
happen if we changed just the id for Ben’s company?

>>> ben.company_id = 2
>>> print(ben.company.name)
Sweets Inc.
>>> ben.company is sweets
True

Hah! That wasn’t expected, was it? ;-)

Let’s commit everything.

>>> store.commit()

Many-to-one reference sets

So, while our model says that employees work for a single company
(we only design normal people here), companies may of course have
multiple employees. We represent that in Storm using reference sets.

We won’t define the company again. Instead, we’ll add a new attribute
to the class.

>>> Company.employees = ReferenceSet(Company.id, Employee.company_id)

Without any further work, we can already see which employees are
working for a given company.

>>> sweets.employees.count()
1

>>> for employee in sweets.employees:
... print(employee.id)
... print(employee.name)
... print(employee is ben)
...
1
Ben Bill
True

Let’s create another employee, and add him to the company, rather
than setting the company in the employee (it sounds better, at least).

>>> mike = store.add(Employee(u"Mike Mayer"))
>>> sweets.employees.add(mike)

That, of course, means that Mike’s working for a company, and so it
should be reflected elsewhere.

>>> mike.company_id
2

>>> mike.company is sweets
True

Many-to-many reference sets and composed keys

We want to represent accountants in our model as well. Companies have
accountants, but accountants may also attend several companies, so we’ll
represent that using a many-to-many relationship.

Let’s create a simple class to use with accountants, and the relationship
class.

>>> class Accountant(Person):
... __storm_table__ = "accountant"
... def __init__(self, name):
... self.name = name

>>> class CompanyAccountant(object):
... __storm_table__ = "company_accountant"
... __storm_primary__ = "company_id", "accountant_id"
... company_id = Int()
... accountant_id = Int()

Hey, we’ve just declared a class with a composed key!

Now, let’s use it to declare the many-to-many relationship in the
company. Once more, we’ll just stick the new attribute in the
existent object. It may easily be defined at class definition
time. Later we’ll see another way to do that as well.

>>> Company.accountants = ReferenceSet(Company.id,
... CompanyAccountant.company_id,
... CompanyAccountant.accountant_id,
... Accountant.id)

Done! The order in which attributes were defined is important,
but the logic should be pretty obvious.

We’re missing some tables, at this point.

>>> store.execute(
... "CREATE TABLE accountant (id INTEGER PRIMARY KEY, name VARCHAR)",
... noresult=True)

>>> store.execute(
... "CREATE TABLE company_accountant "
... "(company_id INTEGER, accountant_id INTEGER,"
... " PRIMARY KEY (company_id, accountant_id))",
... noresult=True)

Let’s give life to a couple of accountants, and register them
in both companies.

>>> karl = Accountant(u"Karl Kent")
>>> frank = Accountant(u"Frank Fourt")

>>> sweets.accountants.add(karl)
>>> sweets.accountants.add(frank)

>>> circus.accountants.add(frank)

That’s it! Really! Notice that we didn’t even have to add them to
the store, since it happens implicitly by linking to the other object
which is already in the store, and that we didn’t have to declare the
relationship object, since that’s known to the reference set.

We can now check them.

>>> sweets.accountants.count()
2

>>> circus.accountants.count()
1

Even though we didn’t use the CompanyAccountant object explicitly,
we can check it if we’re really curious.

>>> store.get(CompanyAccountant, (sweets.id, frank.id))
<...CompanyAccountant object at 0x...>

Notice that we pass a tuple for the get()
method, due to the composed key.

If we wanted to know for which companies accountants are working,
we could easily define a reversed relationship:

>>> Accountant.companies = ReferenceSet(Accountant.id,
... CompanyAccountant.accountant_id,
... CompanyAccountant.company_id,
... Company.id)

>>> for name in sorted(company.name for company in frank.companies):
... print(name)
Circus Inc.
Sweets Inc.

>>> for company in karl.companies:
... print(company.name)
Sweets Inc.

Joins

Since we’ve got some nice data to play with, let’s try to make a
few interesting queries.

Let’s start by checking which companies have at least one employee
named Ben. We have at least two ways to do it.

First, with an implicit join.

>>> result = store.find(Company,
... Employee.company_id == Company.id,
... Employee.name.like(u"Ben %"))

>>> for company in result:
... print(company.name)
Sweets Inc.

Then, we can also do an explicit join. This is interesting for mapping
complex SQL joins to Storm queries.

>>> origin = [Company, Join(Employee, Employee.company_id == Company.id)]
>>> result = store.using(*origin).find(
... Company, Employee.name.like(u"Ben %"))

>>> for company in result:
... print(company.name)
Sweets Inc.

If we already had the company, and wanted to know which of his employees
were named Ben, that’d have been easier.

>>> result = sweets.employees.find(Employee.name.like(u"Ben %"))

>>> for employee in result:
... print(employee.name)
Ben Bill

Sub-selects

Suppose we want to find all accountants that aren’t associated with a
company. We can use a sub-select to get the data we want.

>>> laura = Accountant(u"Laura Montgomery")
>>> store.add(laura)
<...Accountant ...>

>>> subselect = Select(CompanyAccountant.accountant_id, distinct=True)
>>> result = store.find(Accountant, Not(Accountant.id.is_in(subselect)))
>>> result.one() is laura
True

Ordering and limiting results

Ordering and limiting results obtained are certainly among the
simplest and yet most wanted features for such tools, so we want
to make them very easy to understand and use, of course.

A line of code is worth a thousand words, so here are a few examples
that demonstrate how it works:

>>> garry = store.add(Employee(u"Garry Glare"))

>>> result = store.find(Employee)

>>> for employee in result.order_by(Employee.name):
... print(employee.name)
Ben Bill
Garry Glare
Mike Mayer

>>> for employee in result.order_by(Desc(Employee.name)):
... print(employee.name)
Mike Mayer
Garry Glare
Ben Bill

>>> for employee in result.order_by(Employee.name)[:2]:
... print(employee.name)
Ben Bill
Garry Glare

Multiple types with one query

Sometimes, it may be interesting to retrieve more than one object involved
in a given query. Imagine, for instance, that besides knowing which
companies have an employee named Ben, we also want to know who is the
employee. This may be achieved with a query like follows:

>>> result = store.find((Company, Employee),
... Employee.company_id == Company.id,
... Employee.name.like(u"Ben %"))

>>> for company, employee in result:
... print(company.name)
... print(employee.name)
Sweets Inc.
Ben Bill

The Storm base class

So far we’ve been defining our references and reference sets using
classes and their properties. This has some advantages, like being
easier to debug, but also has some disadvantages, such as requiring
classes to be present in the local scope, which potentially leads to
circular import issues.

To prevent that kind of situation, Storm supports defining these
references using the stringified version of the class and property
names. The only inconvenience of doing so is that all involved
classes must inherit from the Storm base class.

Let’s define some new classes to show that. To expose the point,
we’ll refer to a class before it’s actually defined.

>>> class Country(Storm):
... __storm_table__ = "country"
... id = Int(primary=True)
... name = Unicode()
... currency_id = Int()
... currency = Reference(currency_id, "Currency.id")

>>> class Currency(Storm):
... __storm_table__ = "currency"
... id = Int(primary=True)
... symbol = Unicode()

>>> store.execute(
... "CREATE TABLE country "
... "(id INTEGER PRIMARY KEY, name VARCHAR, currency_id INTEGER)",
... noresult=True)

>>> store.execute(
... "CREATE TABLE currency (id INTEGER PRIMARY KEY, symbol VARCHAR)",
... noresult=True)

Now, let’s see if it works.

>>> real = store.add(Currency())
>>> real.id = 1
>>> real.symbol = u"BRL"

>>> brazil = store.add(Country())
>>> brazil.name = u"Brazil"
>>> brazil.currency_id = 1

>>> print(brazil.currency.symbol)
BRL

Questions!? ;-)

Loading hook

Storm allows classes to define a few different hooks are called
to act when certain things happen. One of the interesting hooks
available is the __storm_loaded__ one.

Let’s play with it. We’ll define a temporary subclass of Person
for that.

>>> class PersonWithHook(Person):
... def __init__(self, name):
... print("Creating %s" % name)
... self.name = name
...
... def __storm_loaded__(self):
... print("Loaded %s" % self.name)

>>> earl = store.add(PersonWithHook(u"Earl Easton"))
Creating Earl Easton

>>> earl = store.find(PersonWithHook, name=u"Earl Easton").one()

>>> store.invalidate(earl)
>>> del earl
>>> import gc
>>> collected = gc.collect()

>>> earl = store.find(PersonWithHook, name=u"Earl Easton").one()
Loaded Earl Easton

Note that in the first find, nothing was called, since the object
was still in memory and cached. Then, we invalidated the object
from Storm’s internal cache and ensured that it was out-of-memory
by triggering a garbage collection. After that, the object had
to be retrieved from the database again, and thus the hook was
called (and not the constructor!).

Executing expressions

Storm also offers a way to execute expressions in a
database-agnostic way, when that’s necessary.

For instance:

>>> result = store.execute(Select(Person.name, Person.id == 1))
>>> (name,) = result.get_one()
>>> print(name)
Joe Johnes

This mechanism is used internally by Storm itself to implement
the higher level features.

Auto-reloading values

Storm offers some special values that may be assigned to attributes
under its control. One of these values is
AutoReload. When used, it will make the
object automatically reload the value from the database when touched.
Even primary keys may benefit from its use, as shown below.

>>> from storm.locals import AutoReload

>>> ruy = store.add(Person())
>>> ruy.name = u"Ruy"
>>> print(ruy.id)
None

>>> ruy.id = AutoReload
>>> print(ruy.id)
4

This may be set as the default value for any attribute, making the
object be automatically flushed if necessary.

Expression values

Besides auto-reloading, it’s also possible to assign what we call
a “lazy expression” to an attribute. Such expressions are flushed
to the database when the attribute is accessed, or when the object
is flushed to the database (INSERT/UPDATE time).

For instance:

>>> ruy.name = SQL(
... "(SELECT name || ? FROM person WHERE id=4)", (" Ritcher",))
>>> print(ruy.name)
Ruy Ritcher

Notice that this is just an example of what may be done. There’s
no need to write SQL statements this way, if you don’t want to. You may
also use class-based SQL expressions provided in Storm, or even
not use lazy expressions at all.

Aliases

So now let’s say that we want to find every pair of people that work
for the same company. I have no idea about why one would want to
do that, but that’s a good case for us to exercise aliases.

First, we create an alias for the Employee class.

>>> from storm.info import ClassAlias
>>> AnotherEmployee = ClassAlias(Employee)

Nice, isn’t it?

Now we can easily make the query we want, in a straightforward way:

>>> result = store.find((Employee, AnotherEmployee),
... Employee.company_id == AnotherEmployee.company_id,
... Employee.id > AnotherEmployee.id)

>>> for employee1, employee2 in result:
... print(employee1.name)
... print(employee2.name)
Mike Mayer
Ben Bill

Woah! Mike and Ben work for the same company!

(Quiz for the attentive reader: why is greater than being used in
the query above?)

Debugging

Sometimes you just need to see which statements Storm is executing. A
debug tracer built on top of Storm’s tracing system can be used to see
what’s going on under the hood. A tracer is an object that gets
notified when interesting events occur, such as when Storm executes a
statement. A function to enable and disable statement tracing is
provided. Statements are logged to sys.stderr by default, but a
custom stream may also be used.

>>> import sys
>>> from storm.tracer import debug

>>> debug(True, stream=sys.stdout)
>>> result = store.find((Employee, AnotherEmployee),
... Employee.company_id == AnotherEmployee.company_id,
... Employee.id > AnotherEmployee.id)
>>> list(result)
[...] EXECUTE: ...'SELECT employee.company_id, employee.id, employee.name, "...".company_id, "...".id, "...".name FROM employee, employee AS "..." WHERE employee.company_id = "...".company_id AND employee.id > "...".id', ()
[...] DONE
[(<...Employee object at ...>, <...Employee object at ...>)]

>>> debug(False)
>>> list(result)
[(<...Employee object at ...>, <...Employee object at ...>)]

Much more!

There’s a lot more about Storm to be shown. This tutorial is just a
way to get initiated on some of the concepts. If your questions are
not answered somewhere else, feel free to ask them in the mailing
list.

Infoheritance

Storm doesn’t support classes that have columns in multiple tables. This
makes using inheritance rather difficult. The infoheritance pattern described
here provides a way to get the benefits of inheritance without running into
the problems Storm has with multi-table classes.

Defining a sample model

Let’s consider an inheritance hierarchy to migrate to Storm.

class Person(object):

 def __init__(self, name):
 self.name = name

class SecretAgent(Person):

 def __init__(self, name, passcode):
 super(SecretAgent, self).__init__(name)
 self.passcode = passcode

class Teacher(Person):

 def __init__(self, name, school):
 super(Employee, self).__init__(name):
 self.school = school

We want to use three tables to store data for these objects: person,
secret_agent and teacher. We can’t simply convert instance
attributes to Storm properties and add __storm_table__ definitions
because a single object may not have columns that come from more than one
table. We can’t have Teacher getting its name column from the
person table and its school column from the teacher table, for
example.

The infoheritance pattern

The infoheritance pattern uses composition instead of inheritance to work
around the multiple table limitation. A base Storm class is used to represent
all objects in the hierarchy. Each instance of this base class has an info
property that yields an instance of a specific info class. An info class
provides the additional data and behaviour you’d normally implement in a
subclass. Following is the design from above converted to use the pattern.

>>> from storm.locals import Storm, Store, Int, Unicode, Reference

>>> person_info_types = {}

>>> def register_person_info_type(info_type, info_class):
... existing_info_class = person_info_types.get(info_type)
... if existing_info_class is not None:
... raise RuntimeError("%r has the same info_type of %r" %
... (info_class, existing_info_class))
... person_info_types[info_type] = info_class
... info_class.info_type = info_type

>>> class Person(Storm):
...
... __storm_table__ = "person"
...
... id = Int(allow_none=False, primary=True)
... name = Unicode(allow_none=False)
... info_type = Int(allow_none=False)
... _info = None
...
... def __init__(self, store, name, info_class, **kwargs):
... self.name = name
... self.info_type = info_class.info_type
... store.add(self)
... self._info = info_class(self, **kwargs)
...
... @property
... def info(self):
... if self._info is not None:
... return self._info
... assert self.id is not None
... info_class = person_info_types[self.info_type]
... if not hasattr(info_class, "__storm_table__"):
... info = info_class.__new__(info_class)
... info.person = self
... else:
... info = Store.of(self).get(info_class, self.id)
... self._info = info
... return info

>>> class PersonInfo(object):
...
... def __init__(self, person):
... self.person = person

>>> class StoredPersonInfo(PersonInfo):
...
... person_id = Int(allow_none=False, primary=True)
... person = Reference(person_id, Person.id)

>>> class SecretAgent(StoredPersonInfo):
...
... __storm_table__ = "secret_agent"
...
... passcode = Unicode(allow_none=False)
...
... def __init__(self, person, passcode=None):
... super(SecretAgent, self).__init__(person)
... self.passcode = passcode

>>> class Teacher(StoredPersonInfo):
...
... __storm_table__ = "teacher"
...
... school = Unicode(allow_none=False)
...
... def __init__(self, person, school=None):
... super(Teacher, self).__init__(person)
... self.school = school

The pattern works by having a base class, Person, keep a reference to an
info class, PersonInfo. Info classes need to be registered so that
Person can discover them and load them when necessary. Note that info
types have the same ID as their parent object. This isn’t strictly
necessary, but it makes certain things easy, such as being able to look up
info objects directly by ID when given a person object. Person objects
are required to be in a store to ensure that an ID is available and can used
by the info class.

Registering info classes

Let’s register our info classes. Each class must be registered with a unique
info type key. This key is stored in the database, so be sure to use a stable
value.

>>> register_person_info_type(1, SecretAgent)
>>> register_person_info_type(2, Teacher)

Let’s create a database to store person objects before we continue.

>>> from storm.locals import create_database

>>> database = create_database("sqlite:")
>>> store = Store(database)
>>> result = store.execute("""
... CREATE TABLE person (
... id INTEGER PRIMARY KEY,
... info_type INTEGER NOT NULL,
... name TEXT NOT NULL)
... """)
>>> result = store.execute("""
... CREATE TABLE secret_agent (
... person_id INTEGER PRIMARY KEY,
... passcode TEXT NOT NULL)
... """)
>>> result = store.execute("""
... CREATE TABLE teacher (
... person_id INTEGER PRIMARY KEY,
... school TEXT NOT NULL)
... """)

Creating info classes

We can easily create person objects now.

>>> secret_agent = Person(store, u"Dick Tracy",
... SecretAgent, passcode=u"secret!")
>>> teacher = Person(store, u"Mrs. Cohen",
... Teacher, school=u"Cameron Elementary School")
>>> store.commit()

And we can easily find them again.

>>> del secret_agent
>>> del teacher
>>> store.rollback()

>>> [type(person.info)
... for person in store.find(Person).order_by(Person.name)]
[<class '...SecretAgent'>, <class '...Teacher'>]

Retrieving info classes

Now that we have our basic hierarchy in place we’re going to want to
retrieve objects by info type. Let’s implement a function to make finding
Persons easier.

>>> def get_persons(store, info_classes=None):
... where = []
... if info_classes:
... info_types = [
... info_class.info_type for info_class in info_classes]
... where = [Person.info_type.is_in(info_types)]
... result = store.find(Person, *where)
... result.order_by(Person.name)
... return result

>>> secret_agent = get_persons(store, info_classes=[SecretAgent]).one()
>>> print(secret_agent.name)
Dick Tracy
>>> print(secret_agent.info.passcode)
secret!

>>> teacher = get_persons(store, info_classes=[Teacher]).one()
>>> print(teacher.name)
Mrs. Cohen
>>> print(teacher.info.school)
Cameron Elementary School

Great, we can easily find different kinds of Persons.

In-memory info objects

This design also allows for in-memory info objects. Let’s add one to our
hierarchy.

>>> class Ghost(PersonInfo):
...
... friendly = True

>>> register_person_info_type(3, Ghost)

We create and load in-memory objects the same way we do stored ones.

>>> ghost = Person(store, u"Casper", Ghost)
>>> store.commit()
>>> del ghost
>>> store.rollback()

>>> ghost = get_persons(store, info_classes=[Ghost]).one()
>>> print(ghost.name)
Casper
>>> print(ghost.info.friendly)
True

This pattern is very handy when using Storm with code that would naturally be
implemented using inheritance.

Zope integration

The storm.zope package contains the ZStorm utility which provides
seamless integration between Storm and Zope 3’s transaction system.
Setting up ZStorm is quite easy. In most cases, you want to include
storm/zope/configure.zcml in your application, which you would normally
do in ZCML as follows:

<include package="storm.zope" />

For the purposes of this doctest we’ll register ZStorm manually.

>>> from zope.component import provideUtility, getUtility
>>> import transaction
>>> from storm.zope.interfaces import IZStorm
>>> from storm.zope.zstorm import global_zstorm

>>> provideUtility(global_zstorm, IZStorm)
>>> zstorm = getUtility(IZStorm)
>>> zstorm
<storm.zope.zstorm.ZStorm object at ...>

Awesome, now that the utility is in place we can start to use it!

Getting stores

The ZStorm utility allows us work with named stores.

>>> zstorm.set_default_uri("test", "sqlite:")

Setting a default URI for stores isn’t strictly required. We could
pass it as the second argument to zstorm.get. Providing a default URI
makes it possible to use zstorm.get more easily; this is especially
handy when multiple threads are used as we’ll see further on.

>>> store = zstorm.get("test")
>>> store
<storm.store.Store object at ...>

ZStorm has automatically created a store instance for us. If we ask
for a store by name again, we should get the same instance.

>>> same_store = zstorm.get("test")
>>> same_store is store
True

The stores provided by ZStorm are per-thread. If we ask for the named
store in a different thread we should get a different instance.

>>> import threading

>>> thread_store = []
>>> def get_thread_store():
... thread_store.append(zstorm.get("test"))

>>> thread = threading.Thread(target=get_thread_store)
>>> thread.start()
>>> thread.join()
>>> thread_store != [store]
True

Great! ZStorm abstracts away the process of creating and managing
named stores. Let’s move on and use the stores with Zope’s
transaction system.

Committing transactions

The primary purpose of ZStorm is to integrate with Zope’s transaction
system. Let’s create a schema so we can play with some real data and
see how it works.

>>> result = store.execute("""
... CREATE TABLE person (
... id INTEGER PRIMARY KEY,
... name TEXT)
... """)
>>> store.commit()

We’ll need a Person class to use with this database.

>>> from storm.locals import Storm, Int, Unicode

>>> class Person(Storm):
...
... __storm_table__ = "person"
...
... id = Int(primary=True)
... name = Unicode()
...
... def __init__(self, name):
... self.name = name

Great! Let’s try it out.

>>> person = Person(u"John Doe")
>>> store.add(person)
<...Person object at ...>
>>> transaction.commit()

Notice that we’re not using store.commit directly; we’re using Zope’s
transaction system. Let’s make sure it worked.

>>> store.rollback()
>>> same_person = store.find(Person).one()
>>> same_person is person
True

Awesome!

Aborting transactions

Let’s make sure aborting transactions works, too.

>>> store.add(Person(u"Imposter!"))
<...Person object at ...>

At this point a store.find should return the new object.

>>> for name in sorted(person.name for person in store.find(Person)):
... print(name)
Imposter!
John Doe

All this means is that the data has been flushed to the database; it’s
still not committed. If we abort the transaction the new Person
object should disappear.

>>> transaction.abort()
>>> for person in store.find(Person):
... print(person.name)
John Doe

Excellent! As you can see, ZStorm makes working with SQL databases
and Zope 3 very natural.

ZCML

In the examples above we setup our stores manually. In many cases,
setting up named stores via ZCML directives is more desirable. Add a
stanza similar to the following to your ZCML configuration to setup a
named store.

<store name="test" uri="sqlite:" />

With that in place getUtility(IZStorm).get("test") will return the
store named “test”.

Security Wrappers

Storm knows how to deal with “wrapped” objects – the identity of any
Storm-managed object does not need to be the same as the original
object, by way of the “object info” system. As long as the object info
can be retrieved from the wrapped objects, things work fine.

To interoperate with the Zope security wrapper system, storm.zope
tells Zope to exposes certain Storm-internal attributes which appear
on Storm-managed objects.

>>> from storm.info import get_obj_info, ObjectInfo
>>> from zope.security.checker import ProxyFactory
>>> from pprint import pprint

>>> person = store.find(Person).one()
>>> type(get_obj_info(person)) is ObjectInfo
True
>>> type(get_obj_info(ProxyFactory(person))) is ObjectInfo
True

Security-wrapped result sets can be used in the same way as unwrapped ones.

>>> from zope.component.testing import (
... setUp,
... tearDown,
...)
>>> from zope.configuration import xmlconfig
>>> from zope.security.protectclass import protectName
>>> import storm.zope

>>> setUp()
>>> _ = xmlconfig.file("configure.zcml", package=storm.zope)
>>> protectName(Person, "name", "zope.Public")

>>> another_person = Person(u"Jane Doe")
>>> store.add(another_person)
<...Person object at ...>
>>> result = ProxyFactory(store.find(Person).order_by(Person.name))
>>> for person in result:
... print(person.name)
Jane Doe
John Doe
>>> print(result[0].name)
Jane Doe
>>> for person in result[:1]:
... print(person.name)
Jane Doe
>>> another_person in result
True
>>> result.is_empty()
False
>>> result.any()
<...Person object at ...>
>>> print(result.first().name)
Jane Doe
>>> print(result.last().name)
John Doe
>>> print(result.count())
2

Check list() as well as ordinary iteration: on Python 3, this tries to
call __len__ first (which doesn’t exist, but is nevertheless allowed by
the security wrapper).

>>> for person in list(result):
... print(person.name)
Jane Doe
John Doe

>>> result = ProxyFactory(
... store.find(Person, Person.name.startswith(u"John")))
>>> print(result.one().name)
John Doe

Security-wrapped reference sets work too.

>>> _ = store.execute("""
... CREATE TABLE team (
... id INTEGER PRIMARY KEY,
... name TEXT)
... """)
>>> _ = store.execute("""
... CREATE TABLE teammembership (
... id INTEGER PRIMARY KEY,
... person INTEGER NOT NULL REFERENCES person,
... team INTEGER NOT NULL REFERENCES team)
... """)
>>> store.commit()

>>> from storm.locals import Reference, ReferenceSet, Store

>>> class TeamMembership(Storm):
...
... __storm_table__ = "teammembership"
...
... id = Int(primary=True)
...
... person_id = Int(name="person", allow_none=False)
... person = Reference(person_id, "Person.id")
...
... team_id = Int(name="team", allow_none=False)
... team = Reference(team_id, "Team.id")
...
... def __init__(self, person, team):
... self.person = person
... self.team = team

>>> class Team(Storm):
...
... __storm_table__ = "team"
...
... id = Int(primary=True)
... name = Unicode()
...
... def __init__(self, name):
... self.name = name
...
... members = ReferenceSet(
... "id", "TeamMembership.team_id",
... "TeamMembership.person_id", "Person.id",
... order_by="Person.name")
...
... def addMember(self, person):
... Store.of(self).add(TeamMembership(person, self))

>>> protectName(Team, "members", "zope.Public")
>>> protectName(Team, "addMember", "zope.Public")

>>> doe_family = Team(U"does")
>>> store.add(doe_family)
<...Team object at ...>
>>> doe_family = ProxyFactory(doe_family)
>>> doe_family.addMember(person)
>>> doe_family.addMember(another_person)

>>> for member in doe_family.members:
... print(member.name)
Jane Doe
John Doe
>>> for person in doe_family.members[:1]:
... print(person.name)
Jane Doe
>>> print(doe_family.members[0].name)
Jane Doe

>>> tearDown()

ResultSet interfaces

Query results provide IResultSet (or ISQLObjectResultSet if
SQLObject’s compatibility layer is used).

>>> from storm.zope.interfaces import IResultSet, ISQLObjectResultSet
>>> from storm.store import EmptyResultSet, ResultSet
>>> from storm.sqlobject import SQLObjectResultSet
>>> IResultSet.implementedBy(ResultSet)
True
>>> IResultSet.implementedBy(EmptyResultSet)
True

>>> ISQLObjectResultSet.implementedBy(SQLObjectResultSet)
True

API

	Locals

	Store

	Defining tables and columns

	Base

	Properties

	References

	Variables

	SQLObject emulation

	Expressions

	Databases

	PostgreSQL

	SQLite

	Transaction identifiers

	Hooks and events

	Event

	Tracer

	Miscellaneous

	Cache

	Exceptions

	Info

	Testing

	Timezone

	URIs

	WSGI

Locals

The following names are re-exported from storm.locals for convenience:

	storm.base.Storm

	storm.database.create_database()

	storm.exceptions.StormError

	storm.expr.And

	storm.expr.Asc

	storm.expr.Count

	storm.expr.Delete

	storm.expr.Desc

	storm.expr.In

	storm.expr.Insert

	storm.expr.Join

	storm.expr.Like

	storm.expr.Max

	storm.expr.Min

	storm.expr.Not

	storm.expr.Or

	storm.expr.SQL

	storm.expr.Select

	storm.expr.Update

	storm.info.ClassAlias

	storm.properties.Bool

	storm.properties.Bytes

	storm.properties.Date

	storm.properties.DateTime

	storm.properties.Decimal

	storm.properties.Enum

	storm.properties.Float

	storm.properties.Int

	storm.properties.JSON

	storm.properties.List

	storm.properties.Pickle

	storm.properties.Time

	storm.properties.TimeDelta

	storm.properties.UUID

	storm.properties.Unicode

	storm.references.Proxy

	storm.references.Reference

	storm.references.ReferenceSet

	storm.store.AutoReload

	storm.store.Store

	storm.xid.Xid

Store

The Store interface to a database.

This module contains the highest-level ORM interface in Storm.

	
class storm.store.Store(database, cache=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Storm Store.

This is the highest-level interface to a database. It manages
transactions with commit and rollback, caching, high-level
querying with find, and more.

Note that Store objects are not threadsafe. You should create one
Store per thread in your application, passing them the same
backend Database object.

	Parameters

	
	database – The storm.database.Database instance to use.

	cache – The cache to use. Defaults to a Cache instance.

	
get_database()

	Return this Store’s Database object.

	
static of(obj)

	Get the Store that the object is associated with.

If the given object has not yet been associated with a store,
return None.

	
execute(statement, params=None, noresult=False)

	Execute a basic query.

This is just like storm.database.Connection.execute, except
that a flush is performed first.

	
close()

	Close the connection.

	
begin(xid)

	Start a new two-phase transaction.

	Parameters

	xid – A Xid instance holding identification
data for the new transaction.

	
prepare()

	Prepare a two-phase transaction for the final commit.

	Note

	It must be called inside a two-phase transaction started
with begin.

	
commit()

	Commit all changes to the database.

This invalidates the cache, so all live objects will have data
reloaded next time they are touched.

	
rollback()

	Roll back all outstanding changes, reverting to database state.

	
get(cls, key)

	Get object of type cls with the given primary key from the database.

If the object is alive the database won’t be touched.

	Parameters

	
	cls – Class of the object to be retrieved.

	key – Primary key of object. May be a tuple for composed keys.

	Returns

	The object found with the given primary key, or None
if no object is found.

	
find(cls_spec, *args, **kwargs)

	Perform a query.

Some examples:

store.find(Person, Person.name == u"Joe") --> all Persons named Joe
store.find(Person, name=u"Joe") --> same
store.find((Company, Person), Person.company_id == Company.id) -->
 iterator of tuples of Company and Person instances which are
 associated via the company_id -> Company relation.

	Parameters

	
	cls_spec – The class or tuple of classes whose
associated tables will be queried.

	args – Instances of Expr.

	kwargs – Mapping of simple column names to values or
expressions to query for.

	Returns

	A ResultSet of instances cls_spec. If cls_spec
was a tuple, then an iterator of tuples of such instances.

	
using(*tables)

	Specify tables to use explicitly.

The find method generally does a good job at figuring out
the tables to query by itself, but in some cases it’s useful
to specify them explicitly.

This is most often necessary when an explicit SQL join is
required. An example follows:

join = LeftJoin(Person, Person.id == Company.person_id)
print(list(store.using(Company, join).find((Company, Person))))

The previous code snippet will produce an SQL statement
somewhat similar to this, depending on your backend:

SELECT company.id, employee.company_id, employee.id
FROM company
LEFT JOIN employee ON employee.company_id = company.id;

	Returns

	A TableSet, which has a find method similar to
Store.find.

	
add(obj)

	Add the given object to the store.

The object will be inserted into the database if it has not
yet been added.

The added event will be fired on the object info’s event system.

	
remove(obj)

	Remove the given object from the store.

The associated row will be deleted from the database.

	
reload(obj)

	Reload the given object.

The object will immediately have all of its data reset from
the database. Any pending changes will be thrown away.

	
autoreload(obj=None)

	Set an object or all objects to be reloaded automatically on access.

When a database-backed attribute of one of the objects is
accessed, the object will be reloaded entirely from the database.

	Parameters

	obj – If passed, only mark the given object for
autoreload. Otherwise, all cached objects will be marked for
autoreload.

	
invalidate(obj=None)

	Set an object or all objects to be invalidated.

This prevents Storm from returning the cached object without
first verifying that the object is still available in the
database.

This should almost never be called by application code; it is
only necessary if it is possible that an object has
disappeared through some mechanism that Storm was unable to
detect, like direct SQL statements within the current
transaction that bypassed the ORM layer. The Store
automatically invalidates all cached objects on transaction
boundaries.

	
reset()

	Reset this store, causing all future queries to return new objects.

Beware this method: it breaks the assumption that there will never be
two objects in memory which represent the same database object.

This is useful if you’ve got in-memory changes to an object that you
want to “throw out”; next time they’re fetched the objects will be
recreated, so in-memory modifications will not be in effect for future
queries.

	
add_flush_order(before, after)

	Explicitly specify the order of flushing two objects.

When the next database flush occurs, the order of data
modification statements will be ensured.

	Parameters

	
	before – The object to flush first.

	after – The object to flush after before.

	
remove_flush_order(before, after)

	Cancel an explicit flush order specified with add_flush_order.

	Parameters

	
	before – The before object previously specified in a
call to add_flush_order.

	after – The after object previously specified in a
call to add_flush_order.

	
flush()

	Flush all dirty objects in cache to database.

This method will first call the __storm_pre_flush__ hook of all dirty
objects. If more objects become dirty as a result of executing code
in the hooks, the hook is also called on them. The hook is only
called once for each object.

It will then flush each dirty object to the database, that is,
execute the SQL code to insert/delete/update them. After each
object is flushed, the hook __storm_flushed__ is called on it,
and if changes are made to the object it will get back to the
dirty list, and be flushed again.

Note that Storm will flush objects for you automatically, so you’ll
only need to call this method explicitly in very rare cases where
normal flushing times are insufficient, such as when you want to
make sure a database trigger gets run at a particular time.

	
block_implicit_flushes()

	Block implicit flushes from operations like execute().

	
unblock_implicit_flushes()

	Unblock implicit flushes from operations like execute().

	
block_access()

	Block access to the underlying database connection.

	
unblock_access()

	Unblock access to the underlying database connection.

	
class storm.store.EmptyResultSet(ordered=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object that looks like a ResultSet but represents no rows.

This is convenient for application developers who want to provide
a method which is guaranteed to return a ResultSet-like object
but which, in certain cases, knows there is no point in querying
the database. For example:

def get_people(self, ids):
 if not ids:
 return EmptyResultSet()
 return store.find(People, People.id.is_in(ids))

The methods on EmptyResultSet (one, config, union, etc)
are meant to emulate a ResultSet which has matched no rows.

	
get_select_expr(*columns)

	Get a Select expression to retrieve only the specified columns.

	Parameters

	columns – One or more storm.expr.Column objects whose values
will be fetched.

	Raises

	FeatureError – Raised if no columns are specified.

	Returns

	A Select expression configured to use the query parameters
specified for this result set. The result of the select will
always be an empty set of rows.

	
class storm.store.block_access(*args)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Context manager blocks database access by one or more Stores in the
managed scope.

	
class storm.store.ResultSet(store, find_spec, where=Undef, tables=Undef, select=Undef)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The representation of the results of a query.

Note that having an instance of this class does not indicate that
a database query has necessarily been made. Database queries are
put off until absolutely necessary.

Generally these should not be constructed directly, but instead
retrieved from calls to Store.find.

	
copy()

	Return a copy of this ResultSet object, with the same configuration.

	
config(distinct=None, offset=None, limit=None)

	Configure this result object in-place. All parameters are optional.

	Parameters

	
	distinct – If True, enables usage of the DISTINCT keyword in
the query. If a tuple or list of columns, inserts a DISTINCT ON
(only supported by PostgreSQL).

	offset – Offset where results will start to be retrieved
from the result set.

	limit – Limit the number of objects retrieved from the
result set.

	Returns

	self (not a copy).

	
is_empty()

	Return True [https://docs.python.org/3/library/constants.html#True] if this result set doesn’t contain any results.

	
any()

	Return a single item from the result set.

	Returns

	An arbitrary object or None [https://docs.python.org/3/library/constants.html#None] if one isn’t available.

	See

	one, first, and last.

	
first()

	Return the first item from an ordered result set.

	Raises

	UnorderedError – Raised if the result set isn’t ordered.

	Returns

	The first object or None [https://docs.python.org/3/library/constants.html#None] if one isn’t available.

	See

	last, one, and any.

	
last()

	Return the last item from an ordered result set.

	Raises

	
	FeatureError – Raised if the result set has a LIMIT set.

	UnorderedError – Raised if the result set isn’t ordered.

	Returns

	The last object or None [https://docs.python.org/3/library/constants.html#None] if one isn’t available.

	See

	first, one, and any.

	
one()

	Return one item from a result set containing at most one item.

	Raises

	NotOneError – Raised if the result set contains more than one
item.

	Returns

	The object or None [https://docs.python.org/3/library/constants.html#None] if one isn’t available.

	See

	first, last, and any.

	
order_by(*args)

	Specify the ordering of the results.

The query will be modified appropriately with an ORDER BY clause.

Ascending and descending order can be specified by wrapping
the columns in Asc and Desc.

	Parameters

	args – One or more storm.expr.Column objects.

	
remove()

	Remove all rows represented by this ResultSet from the database.

This is done efficiently with a DELETE statement, so objects
are not actually loaded into Python.

	
group_by(*expr)

	Group this ResultSet by the given expressions.

	Parameters

	expr – The expressions used in the GROUP BY statement.

	Returns

	self (not a copy).

	
having(*expr)

	Filter result previously grouped by.

	Parameters

	expr – Instances of Expr.

	Returns

	self (not a copy).

	
count(expr=Undef, distinct=False)

	Get the number of objects represented by this ResultSet.

	
max(expr)

	Get the highest value from an expression.

	
min(expr)

	Get the lowest value from an expression.

	
avg(expr)

	Get the average value from an expression.

	
sum(expr)

	Get the sum of all values in an expression.

	
get_select_expr(*columns)

	Get a Select expression to retrieve only the specified columns.

	Parameters

	columns – One or more storm.expr.Column objects whose values
will be fetched.

	Raises

	FeatureError – Raised if no columns are specified or if this
result is a set expression such as a union.

	Returns

	A Select expression configured to use the query parameters
specified for this result set, and also limited to only retrieving
data for the specified columns.

	
values(*columns)

	Retrieve only the specified columns.

This does not load full objects from the database into Python.

	Parameters

	columns – One or more storm.expr.Column objects whose
values will be fetched.

	Raises

	FeatureError – Raised if no columns are specified or if this
result is a set expression such as a union.

	Returns

	An iterator of tuples of the values for each column
from each matching row in the database.

	
set(*args, **kwargs)

	Update objects in the result set with the given arguments.

This method will update all objects in the current result set
to match expressions given as equalities or keyword arguments.
These objects may still be in the database (an UPDATE is issued)
or may be cached.

For instance, result.set(Class.attr1 == 1, attr2=2) will set
attr1 to 1 and attr2 to 2, on all matching objects.

	
cached()

	Return matching objects from the cache for the current query.

	
find(*args, **kwargs)

	Perform a query on objects within this result set.

This is analogous to Store.find, although it doesn’t take a
cls_spec argument, instead using the same tables as the
existing result set, and restricts the results to those in
this set.

	Parameters

	
	args – Instances of Expr.

	kwargs – Mapping of simple column names to values or
expressions to query for.

	Returns

	A ResultSet of matching instances.

	
union(other, all=False)

	Get the Union of this result set and another.

	Parameters

	all – If True, include duplicates.

	
difference(other, all=False)

	Get the difference, using Except, of this result set and another.

	Parameters

	all – If True, include duplicates.

	
intersection(other, all=False)

	Get the Intersection of this result set and another.

	Parameters

	all – If True, include duplicates.

	
class storm.store.TableSet(store, tables)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The representation of a set of tables which can be queried at once.

This will typically be constructed by a call to Store.using.

	
find(cls_spec, *args, **kwargs)

	Perform a query on the previously specified tables.

This is identical to Store.find except that the tables are
explicitly specified instead of relying on inference.

	Returns

	A ResultSet.

	
storm.store.AutoReload

	A marker for reloading a single value.

Often this will be used to specify that a specific attribute
should be loaded from the database on the next access, like so:

storm_object.property = AutoReload

On the next access to storm_object.property, the value will be
loaded from the database.

It is also often used as a default value for a property:

class Person(object):
 __storm_table__ = "person"
 id = Int(allow_none=False, default=AutoReload)

person = store.add(Person)
person.id # gets the attribute from the database.

Defining tables and columns

Base

	
class storm.base.Storm

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An optional base class for objects stored in a Storm Store.

It causes your subclasses to be associated with a Storm
PropertyRegistry. It is necessary to use this if you want to
specify References with strings.

Properties

	
class storm.properties.Property(name=None, primary=False, variable_class=<class 'storm.variables.Variable'>, variable_kwargs={})

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A property representing a database column.

Properties can be set as attributes of classes that have a
__storm_table__, and can then be used like ordinary Python properties
on instances of the class, corresponding to database columns.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	variable_class – The type of storm.variables.Variable
corresponding to this property.

	variable_kwargs – Dictionary of keyword arguments to be passed
when constructing the underlying variable.

	
class storm.properties.SimpleProperty(name=None, primary=False, **kwargs)

	Bases: storm.properties.Property

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
class storm.properties.Bool(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Boolean property.

This accepts integer, float [https://docs.python.org/3/library/functions.html#float], or decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] values, and stores
them as booleans.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.BoolVariable

	
class storm.properties.Int(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Integer property.

This accepts integer, float [https://docs.python.org/3/library/functions.html#float], or decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] values, and stores
them as integers.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.IntVariable

	
class storm.properties.Float(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Float property.

This accepts integer, float [https://docs.python.org/3/library/functions.html#float], or decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] values, and stores
them as floating-point values.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.FloatVariable

	
class storm.properties.Decimal(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Decimal property.

This accepts integer or decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] values, and stores them as
text strings containing their decimal representation.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.DecimalVariable

	
class storm.properties.Bytes(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Bytes property.

This accepts bytes [https://docs.python.org/3/library/stdtypes.html#bytes], buffer (Python 2), or memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview] (Python 3)
objects, and stores them as byte strings.

Deprecated aliases: Chars, RawStr.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.BytesVariable

	
storm.properties.RawStr

	alias of storm.properties.Bytes

	
class storm.properties.Unicode(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Unicode property.

This accepts unicode (Python 2) or str [https://docs.python.org/3/library/stdtypes.html#str] (Python 3) objects, and
stores them as text strings. Note that it does not accept str [https://docs.python.org/3/library/stdtypes.html#str]
objects on Python 2.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.UnicodeVariable

	
class storm.properties.DateTime(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Date and time property.

This accepts aware datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] objects and stores them as
timestamps; it also accepts integer or float [https://docs.python.org/3/library/functions.html#float] objects, converting them
using datetime.utcfromtimestamp. Note that it does not accept naive
datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] objects (those that do not have timezone
information).

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.DateTimeVariable

	
class storm.properties.Date(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Date property.

This accepts datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date] objects and stores them as datestamps; it
also accepts datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] objects, converting them using
datetime.datetime.date [https://docs.python.org/3/library/datetime.html#datetime.datetime.date].

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.DateVariable

	
class storm.properties.Time(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Time property.

This accepts datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time] objects and stores them as datestamps; it
also accepts datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] objects, converting them using
datetime.datetime.time [https://docs.python.org/3/library/datetime.html#datetime.datetime.time].

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.TimeVariable

	
class storm.properties.TimeDelta(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Time delta property.

This accepts datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] objects and stores them as time
intervals.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.TimeDeltaVariable

	
class storm.properties.UUID(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

UUID property.

This accepts uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] objects and stores them as their text
representation.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.UUIDVariable

	
class storm.properties.Pickle(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Pickle property.

This accepts any object that can be serialized using pickle [https://docs.python.org/3/library/pickle.html#module-pickle], and
stores it as a byte string containing its pickled representation.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.PickleVariable

	
class storm.properties.JSON(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

JSON property.

This accepts any object that can be serialized using json [https://docs.python.org/3/library/json.html#module-json], and stores
it as a text string containing its JSON representation.

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.JSONVariable

	
class storm.properties.List(name=None, **kwargs)

	Bases: storm.properties.SimpleProperty

List property.

This accepts iterable objects and stores them as a list where each
element is an object of the given value type.

	Parameters

	
	name – The name of this property.

	type – An instance of Property defining the type of each
element of this list.

	default_factory – If specified, this will immediately be
called to get the initial value.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of storm.variables.ListVariable

	
class storm.properties.Enum(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

Enumeration property, allowing used values to differ from stored ones.

For instance:

class Class(Storm):
 prop = Enum(map={"one": 1, "two": 2})

obj.prop = "one"
assert obj.prop == "one"

obj.prop = 1 # Raises error.

Another example:

class Class(Storm):
 prop = Enum(map={"one": 1, "two": 2}, set_map={"um": 1})

obj.prop = "um"
assert obj.prop is "one"

obj.prop = "one" # Raises error.

	
variable_class

	alias of storm.variables.EnumVariable

	
class storm.properties.PropertyRegistry

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object which remembers the Storm properties specified on
classes, and is able to translate names to these properties.

	
get(name, namespace=None)

	Translate a property name path to the actual property.

This method accepts a property name like "id" or "Class.id"
or "module.path.Class.id", and tries to find a unique
class/property with the given name.

When the namespace argument is given, the registry will be
able to disambiguate names by choosing the one that is closer
to the given namespace. For instance get("Class.id", "a.b.c")
will choose a.Class.id rather than d.Class.id.

	
add_class(cls)

	Register properties of cls so that they may be found by get().

	
add_property(cls, prop, attr_name)

	Register property of cls so that it may be found by get().

	
clear()

	Clean up all properties in the registry.

Used by tests.

References

	
class storm.references.Reference(local_key, remote_key, on_remote=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Descriptor for one-to-one relationships.

This is typically used when the class that it is being defined on
has a foreign key onto another table:

class OtherGuy(object):
 ...
 id = Int()

class MyGuy(object):
 ...
 other_guy_id = Int()
 other_guy = Reference(other_guy_id, OtherGuy.id)

but can also be used for backwards references, where OtherGuy’s
table has a foreign key onto the class that you want this property
on:

class OtherGuy(object):
 ...
 my_guy_id = Int() # in the database, a foreign key to my_guy.id

class MyGuy(object):
 ...
 id = Int()
 other_guy = Reference(id, OtherGuy.my_guy_id, on_remote=True)

In both cases, MyGuy().other_guy will resolve to the
OtherGuy instance which is linked to it. In the first case, it
will be the OtherGuy instance whose id [https://docs.python.org/3/library/functions.html#id] is equivalent to the
MyGuy’s other_guy_id; in the second, it’ll be the
OtherGuy instance whose my_guy_id is equivalent to the
MyGuy’s id [https://docs.python.org/3/library/functions.html#id].

Assigning to the property, for example with C{MyGuy().other_guy =
OtherGuy()}, will link the objects and update either
MyGuy.other_guy_id or OtherGuy.my_guy_id accordingly.

String references may be used in place of storm.expr.Column objects
throughout, and are resolved to columns using PropertyResolver.

Create a Reference property.

	Parameters

	
	local_key – The sibling column which is the foreign key
onto remote_key. (unless on_remote is passed; see
below).

	remote_key – The column on the referred-to object which
will have the same value as that for local_key when
resolved on an instance.

	on_remote – If specified, then the reference is
backwards: It is the remote_key which is a foreign key
onto local_key.

	
class storm.references.ReferenceSet(local_key1, remote_key1, remote_key2=None, local_key2=None, order_by=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Descriptor for many-to-one and many-to-many reference sets.

This is typically used when another class has a foreign key onto the
class being defined, either directly (the many-to-one case) or via an
intermediate table (the many-to-many case). For instance:

class Person(Storm):
 ...
 id = Int(primary=True)
 email_addresses = ReferenceSet("id", "EmailAddress.owner_id")

class EmailAddress(Storm):
 ...
 owner_id = Int(name="owner", allow_none=False)
 owner = Reference(owner_id, "Person.id")

class TeamMembership(Storm):
 ...
 person_id = Int(name="person", allow_none=False)
 person = Reference(person_id, "Person.id")
 team_id = Int(name="team", allow_none=False)
 team = Reference(team_id, "Team.id")

class Team(Storm):
 ...
 id = Int(primary=True)
 members = ReferenceSet(
 "id", "TeamMembership.team_id",
 "TeamMembership.person_id", "Person.id",
 order_by="Person.name")

In this case, Person().email_addresses resolves to a
BoundReferenceSet of all the email addresses linked to that person (a
many-to-one relationship), while Team().members resolves to a
BoundIndirectReferenceSet of all the members of that team (a
many-to-many relationship). These can be used in a somewhat similar way
to ResultSet objects.

String references may be used in place of storm.expr.Column objects
throughout, and are resolved to columns using PropertyResolver.

	Parameters

	
	local_key1 – The sibling column which has the same value as
that for remote_key1 when resolved on an instance.

	remote_key1 – The column on the referring object (in the case
of a many-to-one relation) or on the intermediate table (in the
case of a many-to-many relation) which is the foreign key onto
local_key1.

	remote_key2 – In the case of a many-to-many relation, the
column on the intermediate table which is the foreign key onto
local_key2.

	local_key2 – In the case of a many-to-many relation, the
column on the referred-to object which has the same value as
remote_key2 when resolved on an instance.

	order_by – If not None [https://docs.python.org/3/library/constants.html#None], order the resolved
BoundReferenceSet or BoundIndirectReferenceSet by these
columns, as in storm.store.ResultSet.order_by.

	
class storm.references.Proxy(reference, remote_prop)

	Bases: storm.expr.ComparableExpr

Proxy exposes a referred object’s column as a local column.

For example:

class Foo(object):
 bar_id = Int()
 bar = Reference(bar_id, Bar.id)
 bar_title = Proxy(bar, Bar.title)

For most uses, Foo.bar_title should behave as if it were
a native property of Foo.

	
class RemoteProp

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This descriptor will resolve and set the _remote_prop attribute
when it’s first used. It avoids having a test at every single
place where the attribute is touched.

Variables

	
class storm.variables.LazyValue

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Marker to be used as a base class on lazily evaluated values.

	
storm.variables.VariableFactory

	alias of functools.partial

	
class storm.variables.Variable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Basic representation of a database value in Python.

	Variables

	
	column – The column this variable represents.

	event – The event system on which to broadcast events. If
None, no events will be emitted.

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set.

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
get_lazy(default=None)

	Get the current LazyValue without resolving its value.

	Parameters

	default – If no LazyValue was previously specified,
return this value. Defaults to None.

	
get(default=None, to_db=False)

	Get the value, resolving it from a LazyValue if necessary.

If the current value is an instance of LazyValue, then the
resolve-lazy-value event will be emitted, to give third
parties the chance to resolve the lazy value to a real value.

	Parameters

	
	default – Returned if no value has been set.

	to_db – A boolean flag indicating whether this value is
destined for the database.

	
set(value, from_db=False)

	Set a new value.

Generally this will be called when an attribute was set in
Python, or data is being loaded from the database.

If the value is different from the previous value (or it is a
LazyValue), then the changed event will be emitted.

	Parameters

	
	value – The value to set. If this is an instance of
LazyValue, then later calls to get will try to
resolve the value.

	from_db – A boolean indicating whether this value has
come from the database.

	
delete()

	Delete the internal value.

If there was a value set, then emit the changed event.

	
is_defined()

	Check whether there is currently a value.

	Returns

	boolean indicating whether there is currently a value
for this variable. Note that if a LazyValue was
previously set, this returns False; it only returns True if
there is currently a real value set.

	
has_changed()

	Check whether the value has changed.

	Returns

	boolean indicating whether the value has changed
since the last call to checkpoint.

	
get_state()

	Get the internal state of this object.

	Returns

	A value which can later be passed to set_state.

	
set_state(state)

	Set the internal state of this object.

	Parameters

	state – A result from a previous call to
get_state. The internal state of this variable will be set
to the state of the variable which get_state was called on.

	
checkpoint()

	“Checkpoint” the internal state.

See has_changed.

	
copy()

	Make a new copy of this Variable with the same internal state.

	
parse_get(value, to_db)

	Convert the internal value to an external value.

Get a representation of this value either for Python or for
the database. This method is only intended to be overridden
in subclasses, not called from external code.

	Parameters

	
	value – The value to be converted.

	to_db – Whether or not this value is destined for the
database.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.BoolVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.IntVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.FloatVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.DecimalVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
static parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
static parse_get(value, to_db)

	Convert the internal value to an external value.

Get a representation of this value either for Python or for
the database. This method is only intended to be overridden
in subclasses, not called from external code.

	Parameters

	
	value – The value to be converted.

	to_db – Whether or not this value is destined for the
database.

	
class storm.variables.BytesVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
storm.variables.RawStrVariable

	alias of storm.variables.BytesVariable

	
class storm.variables.UnicodeVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.DateTimeVariable(*args, **kwargs)

	Bases: storm.variables.Variable

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.DateVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.TimeVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.TimeDeltaVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
class storm.variables.UUIDVariable(value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None)

	Bases: storm.variables.Variable

	Parameters

	
	value – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	value_factory – If specified, this will immediately be
called to get the initial value.

	from_db – A boolean value indicating where the initial
value comes from, if value or value_factory are
specified.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	column (storm.expr.Column) – The column that this variable represents. It’s
used for reporting better error messages.

	event (storm.event.EventSystem) – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
parse_get(value, to_db)

	Convert the internal value to an external value.

Get a representation of this value either for Python or for
the database. This method is only intended to be overridden
in subclasses, not called from external code.

	Parameters

	
	value – The value to be converted.

	to_db – Whether or not this value is destined for the
database.

	
class storm.variables.EnumVariable(get_map, set_map, *args, **kwargs)

	Bases: storm.variables.Variable

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
parse_get(value, to_db)

	Convert the internal value to an external value.

Get a representation of this value either for Python or for
the database. This method is only intended to be overridden
in subclasses, not called from external code.

	Parameters

	
	value – The value to be converted.

	to_db – Whether or not this value is destined for the
database.

	
class storm.variables.PickleVariable(*args, **kwargs)

	Bases: storm.variables.EncodedValueVariable

	
class storm.variables.JSONVariable(*args, **kwargs)

	Bases: storm.variables.EncodedValueVariable

	
class storm.variables.ListVariable(item_factory, *args, **kwargs)

	Bases: storm.variables.MutableValueVariable

	
parse_set(value, from_db)

	Convert an external value to an internal value.

A value is being set either from Python code or from the
database. Parse it into its internal representation. This
method is only intended to be overridden in subclasses, not
called from external code.

	Parameters

	
	value – The value, either from Python code setting an
attribute or from a column in a database.

	from_db – A boolean flag indicating whether this value
is from the database.

	
parse_get(value, to_db)

	Convert the internal value to an external value.

Get a representation of this value either for Python or for
the database. This method is only intended to be overridden
in subclasses, not called from external code.

	Parameters

	
	value – The value to be converted.

	to_db – Whether or not this value is destined for the
database.

	
get_state()

	Get the internal state of this object.

	Returns

	A value which can later be passed to set_state.

	
set_state(state)

	Set the internal state of this object.

	Parameters

	state – A result from a previous call to
get_state. The internal state of this variable will be set
to the state of the variable which get_state was called on.

SQLObject emulation

A SQLObject emulation layer for Storm.

SQLObjectBase is the central point of compatibility.

	
storm.sqlobject.DESC

	alias of storm.expr.Desc

	
storm.sqlobject.AND

	alias of storm.expr.And

	
storm.sqlobject.OR

	alias of storm.expr.Or

	
storm.sqlobject.NOT

	alias of storm.expr.Not

	
storm.sqlobject.IN

	alias of storm.expr.In

	
storm.sqlobject.LIKE

	alias of storm.expr.Like

	
storm.sqlobject.SQLConstant

	alias of storm.expr.SQL

	
storm.sqlobject.SQLObjectMoreThanOneResultError

	alias of storm.exceptions.NotOneError

	
exception storm.sqlobject.SQLObjectNotFound

	Bases: storm.exceptions.StormError

	
class storm.sqlobject.SQLObjectBase(*args, **kwargs)

	Bases: storm.base.Storm

The root class of all SQLObject-emulating classes in your application.

The general strategy for using Storm’s SQLObject emulation layer
is to create an application-specific subclass of SQLObjectBase
(probably named “SQLObject”) that provides an implementation of
_get_store to return an instance of storm.store.Store. It may
even be implemented as returning a global Store instance. Then
all database classes should subclass that class.

	
class storm.sqlobject.SQLObjectResultSet(cls, clause=None, clauseTables=None, orderBy=None, limit=None, distinct=None, prejoins=None, prejoinClauseTables=None, selectAlso=None, by={}, prepared_result_set=None, slice=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

SQLObject-equivalent of the ResultSet class in Storm.

Storm handles joins in the Store interface, while SQLObject
does that in the result one. To offer support for prejoins,
we can’t simply wrap our ResultSet instance, and instead have
to postpone the actual find until the very last moment.

	
is_empty()

	Return True [https://docs.python.org/3/library/constants.html#True] if this result set doesn’t contain any results.

	
class storm.sqlobject.StringCol(dbName=None, notNull=False, default=Undef, alternateID=None, unique=<object object>, name=<object object>, alternateMethodName=None, length=<object object>, immutable=None, storm_validator=None)

	Bases: storm.sqlobject.PropertyAdapter, storm.sqlobject.AutoUnicode

	
class storm.sqlobject.IntCol(dbName=None, notNull=False, default=Undef, alternateID=None, unique=<object object>, name=<object object>, alternateMethodName=None, length=<object object>, immutable=None, storm_validator=None)

	Bases: storm.sqlobject.PropertyAdapter, storm.properties.Int

	
class storm.sqlobject.BoolCol(dbName=None, notNull=False, default=Undef, alternateID=None, unique=<object object>, name=<object object>, alternateMethodName=None, length=<object object>, immutable=None, storm_validator=None)

	Bases: storm.sqlobject.PropertyAdapter, storm.properties.Bool

	
class storm.sqlobject.FloatCol(dbName=None, notNull=False, default=Undef, alternateID=None, unique=<object object>, name=<object object>, alternateMethodName=None, length=<object object>, immutable=None, storm_validator=None)

	Bases: storm.sqlobject.PropertyAdapter, storm.properties.Float

	
class storm.sqlobject.UtcDateTimeCol(dbName=None, notNull=False, default=Undef, alternateID=None, unique=<object object>, name=<object object>, alternateMethodName=None, length=<object object>, immutable=None, storm_validator=None)

	Bases: storm.sqlobject.PropertyAdapter, storm.properties.DateTime

	
class storm.sqlobject.DateCol(dbName=None, notNull=False, default=Undef, alternateID=None, unique=<object object>, name=<object object>, alternateMethodName=None, length=<object object>, immutable=None, storm_validator=None)

	Bases: storm.sqlobject.PropertyAdapter, storm.properties.Date

	
class storm.sqlobject.IntervalCol(dbName=None, notNull=False, default=Undef, alternateID=None, unique=<object object>, name=<object object>, alternateMethodName=None, length=<object object>, immutable=None, storm_validator=None)

	Bases: storm.sqlobject.PropertyAdapter, storm.properties.TimeDelta

	
class storm.sqlobject.SQLMultipleJoin(otherClass=None, joinColumn=None, intermediateTable=None, otherColumn=None, orderBy=None, prejoins=None)

	Bases: storm.references.ReferenceSet

	
storm.sqlobject.SQLRelatedJoin

	alias of storm.sqlobject.SQLMultipleJoin

	
class storm.sqlobject.SingleJoin(otherClass, joinColumn, prejoins=<object object>)

	Bases: storm.references.Reference

	
class storm.sqlobject.CONTAINSSTRING(expr, string)

	Bases: storm.expr.Like

Expressions

	
class storm.expr.Compile(parent=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Compiler based on the concept of generic functions.

	
when(*types)

	Decorator to include a type handler in this compiler.

Use this as:

>>> @compile.when(TypeA, TypeB)
>>> def compile_type_a_or_b(compile, expr, state):
>>> ...
>>> return "THE COMPILED SQL STATEMENT"

	
add_reserved_words(words)

	Include words to be considered reserved and thus escaped.

Reserved words are escaped during compilation when they’re
seen in a SQLToken expression.

	
create_child()

	Create a new instance of Compile which inherits from this one.

This is most commonly used to customize a compiler for
database-specific compilation strategies.

	
class storm.expr.CompilePython(parent=None)

	Bases: storm.expr.Compile

	
class storm.expr.State

	Bases: object [https://docs.python.org/3/library/functions.html#object]

All the data necessary during compilation of an expression.

	Variables

	
	aliases – Dict of Column instances to Alias instances,
specifying how columns should be compiled as aliases in very
specific situations. This is typically used to work around
strange deficiencies in various databases.

	auto_tables – The list of all implicitly-used tables. e.g.,
in store.find(Foo, Foo.attr==Bar.id), the tables of Bar and
Foo are implicitly used because columns in them are
referenced. This is used when building tables.

	join_tables – If not None, when Join expressions are
compiled, tables seen will be added to this set. This acts as
a blacklist against auto_tables when compiling Joins, because
the generated statements should not refer to the table twice.

	context – an instance of Context, specifying the context
of the expression currently being compiled.

	precedence – Current precedence, automatically set and restored
by the compiler. If an inner precedence is lower than an outer
precedence, parenthesis around the inner expression are
automatically emitted.

	
push(attr, new_value=Undef)

	Set an attribute in a way that can later be reverted with pop.

	
pop()

	Revert the topmost push.

	
class storm.expr.Context(name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object used to specify the nature of expected SQL expressions
being compiled in a given context.

	
class storm.expr.Expr

	Bases: storm.variables.LazyValue

	
class storm.expr.ComparableExpr

	Bases: storm.expr.Expr, storm.expr.Comparable

	
class storm.expr.BinaryExpr(expr1, expr2)

	Bases: storm.expr.ComparableExpr

	
class storm.expr.CompoundExpr(*exprs)

	Bases: storm.expr.ComparableExpr

	
storm.expr.build_tables(compile, tables, default_tables, state)

	Compile provided tables.

Tables will be built from either tables, state.auto_tables, or
default_tables. If tables is not Undef, it will be used. If
tables is Undef and state.auto_tables is available, that’s used
instead. If neither tables nor state.auto_tables are available,
default_tables is tried as a last resort. If none of them are available,
NoTableError is raised.

	
class storm.expr.Select(columns, where=Undef, tables=Undef, default_tables=Undef, order_by=Undef, group_by=Undef, limit=Undef, offset=Undef, distinct=False, having=Undef)

	Bases: storm.expr.Expr

	
class storm.expr.Insert(map, table=Undef, default_table=Undef, primary_columns=Undef, primary_variables=Undef, values=Undef)

	Bases: storm.expr.Expr

Expression representing an insert statement.

	Variables

	
	map [https://docs.python.org/3/library/functions.html#map] – Dictionary mapping columns to values, or a sequence of columns
for a bulk insert.

	table – Table where the row should be inserted.

	default_table – Table to use if no table is explicitly provided, and
no tables may be inferred from provided columns.

	primary_columns – Tuple of columns forming the primary key of the
table where the row will be inserted. This is a hint used by backends
to process the insertion of rows.

	primary_variables – Tuple of variables with values for the primary
key of the table where the row will be inserted. This is a hint used
by backends to process the insertion of rows.

	values – Expression or sequence of tuples of values for bulk
insertion.

	
class storm.expr.Update(map, where=Undef, table=Undef, default_table=Undef, primary_columns=Undef)

	Bases: storm.expr.Expr

	
class storm.expr.Delete(where=Undef, table=Undef, default_table=Undef)

	Bases: storm.expr.Expr

	
class storm.expr.Column(name=Undef, table=Undef, primary=False, variable_factory=None)

	Bases: storm.expr.ComparableExpr

Representation of a column in some table.

	Variables

	
	name – Column name.

	table – Column table (maybe another expression).

	primary – Integer representing the primary key position of
this column, or 0 if it’s not a primary key. May be provided as
a bool.

	variable_factory – Factory producing Variable instances typed
according to this column.

	
class storm.expr.Alias(expr, name=Undef)

	Bases: storm.expr.ComparableExpr

A representation of “AS” alias clauses. e.g., SELECT foo AS bar.

Create alias of expr AS name.

If name is not given, then a name will automatically be
generated.

	
class storm.expr.FromExpr

	Bases: storm.expr.Expr

	
class storm.expr.Table(name)

	Bases: storm.expr.FromExpr

	
class storm.expr.JoinExpr(arg1, arg2=Undef, on=Undef)

	Bases: storm.expr.FromExpr

	
class storm.expr.Join(arg1, arg2=Undef, on=Undef)

	Bases: storm.expr.JoinExpr

	
class storm.expr.LeftJoin(arg1, arg2=Undef, on=Undef)

	Bases: storm.expr.JoinExpr

	
class storm.expr.RightJoin(arg1, arg2=Undef, on=Undef)

	Bases: storm.expr.JoinExpr

	
class storm.expr.NaturalJoin(arg1, arg2=Undef, on=Undef)

	Bases: storm.expr.JoinExpr

	
class storm.expr.NaturalLeftJoin(arg1, arg2=Undef, on=Undef)

	Bases: storm.expr.JoinExpr

	
class storm.expr.NaturalRightJoin(arg1, arg2=Undef, on=Undef)

	Bases: storm.expr.JoinExpr

	
class storm.expr.Distinct(expr)

	Bases: storm.expr.Expr

Add the ‘DISTINCT’ prefix to an expression.

	
class storm.expr.BinaryOper(expr1, expr2)

	Bases: storm.expr.BinaryExpr

	
class storm.expr.NonAssocBinaryOper(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.CompoundOper(*exprs)

	Bases: storm.expr.CompoundExpr

	
class storm.expr.Eq(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.Ne(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.Gt(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.Ge(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.Lt(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.Le(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.RShift(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.LShift(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.Like(expr1, expr2, escape=Undef, case_sensitive=None)

	Bases: storm.expr.BinaryOper

	
class storm.expr.In(expr1, expr2)

	Bases: storm.expr.BinaryOper

	
class storm.expr.Add(*exprs)

	Bases: storm.expr.CompoundOper

	
class storm.expr.Sub(expr1, expr2)

	Bases: storm.expr.NonAssocBinaryOper

	
class storm.expr.Mul(*exprs)

	Bases: storm.expr.CompoundOper

	
class storm.expr.Div(expr1, expr2)

	Bases: storm.expr.NonAssocBinaryOper

	
class storm.expr.Mod(expr1, expr2)

	Bases: storm.expr.NonAssocBinaryOper

	
class storm.expr.And(*exprs)

	Bases: storm.expr.CompoundOper

	
class storm.expr.Or(*exprs)

	Bases: storm.expr.CompoundOper

	
class storm.expr.SetExpr(*exprs, **kwargs)

	Bases: storm.expr.Expr

	
class storm.expr.Union(*exprs, **kwargs)

	Bases: storm.expr.SetExpr

	
class storm.expr.Except(*exprs, **kwargs)

	Bases: storm.expr.SetExpr

	
class storm.expr.Intersect(*exprs, **kwargs)

	Bases: storm.expr.SetExpr

	
class storm.expr.FuncExpr

	Bases: storm.expr.ComparableExpr

	
class storm.expr.Count(column=Undef, distinct=False)

	Bases: storm.expr.FuncExpr

	
class storm.expr.Func(name, *args)

	Bases: storm.expr.FuncExpr

	
name

	str(object=’’) -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.__str__() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to ‘strict’.

	
class storm.expr.NamedFunc(*args)

	Bases: storm.expr.FuncExpr

	
class storm.expr.Max(*args)

	Bases: storm.expr.NamedFunc

	
class storm.expr.Min(*args)

	Bases: storm.expr.NamedFunc

	
class storm.expr.Avg(*args)

	Bases: storm.expr.NamedFunc

	
class storm.expr.Sum(*args)

	Bases: storm.expr.NamedFunc

	
class storm.expr.Lower(*args)

	Bases: storm.expr.NamedFunc

	
class storm.expr.Upper(*args)

	Bases: storm.expr.NamedFunc

	
class storm.expr.Coalesce(*args)

	Bases: storm.expr.NamedFunc

	
class storm.expr.Row(*args)

	Bases: storm.expr.NamedFunc

	
class storm.expr.Cast(column, type)

	Bases: storm.expr.FuncExpr

A representation of CAST clauses. e.g., CAST(bar AS TEXT).

Create a cast of column as type [https://docs.python.org/3/library/functions.html#type].

	
storm.expr.compile_cast(compile, cast, state)

	Compile Cast expressions.

	
class storm.expr.PrefixExpr(expr)

	Bases: storm.expr.Expr

	
class storm.expr.SuffixExpr(expr)

	Bases: storm.expr.Expr

	
class storm.expr.Not(expr)

	Bases: storm.expr.PrefixExpr

	
class storm.expr.Exists(expr)

	Bases: storm.expr.PrefixExpr

	
class storm.expr.Neg(expr)

	Bases: storm.expr.PrefixExpr

	
class storm.expr.Asc(expr)

	Bases: storm.expr.SuffixExpr

	
class storm.expr.Desc(expr)

	Bases: storm.expr.SuffixExpr

	
class storm.expr.SQLRaw

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str]

Subtype to mark a string as something that shouldn’t be compiled.

This is handled internally by the compiler.

	
class storm.expr.SQLToken

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str]

Marker for strings that should be considered as a single SQL token.

These strings will be quoted, when needed.

	
storm.expr.is_safe_token()

	Matches zero or more characters at the beginning of the string.

	
class storm.expr.SQL(expr, params=Undef, tables=Undef)

	Bases: storm.expr.ComparableExpr

	
class storm.expr.Sequence(name)

	Bases: storm.expr.Expr

Expression representing auto-incrementing support from the database.

This should be translated into the next value of the named
auto-incrementing sequence. There’s no standard way to compile a
sequence, since it’s very database-dependent.

This may be used as follows:

class Class(object):
 (...)
 id = Int(default=Sequence("my_sequence_name"))

	
class storm.expr.AutoTables(expr, tables, replace=False)

	Bases: storm.expr.Expr

This class will inject one or more entries in state.auto_tables.

If the constructor is passed replace=True, it will also discard any
auto_table entries injected by compiling the given expression.

Databases

Basic database interfacing mechanisms for Storm.

This is the common code for database support; specific databases are
supported in modules in storm.databases.

	
class storm.database.Result(connection, raw_cursor)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A representation of the results from a single SQL statement.

	
close()

	Close the underlying raw cursor, if it hasn’t already been closed.

	
get_one()

	Fetch one result from the cursor.

The result will be converted to an appropriate format via
from_database.

	Raises

	DisconnectionError – Raised when the connection is lost.
Reconnection happens automatically on rollback.

	Returns

	A converted row or None, if no data is left.

	
get_all()

	Fetch all results from the cursor.

The results will be converted to an appropriate format via
from_database.

	Raises

	DisconnectionError – Raised when the connection is lost.
Reconnection happens automatically on rollback.

	
rowcount

	See PEP 249 for further details on rowcount.

	Returns

	the number of affected rows, or None if the database
backend does not provide this information. Return value
is undefined if all results have not yet been retrieved.

	
get_insert_identity(primary_columns, primary_variables)

	Get a query which will return the row that was just inserted.

This must be overridden in database-specific subclasses.

	Return type

	storm.expr.Expr

	
static set_variable(variable, value)

	Set the given variable’s value from the database.

	
static from_database(row)

	Convert a row fetched from the database to an agnostic format.

This method is intended to be overridden in subclasses, but
not called externally.

If there are any peculiarities in the datatypes returned from
a database backend, this method should be overridden in the
backend subclass to convert them.

	
class storm.database.Connection(database, event=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A connection to a database.

	Variables

	
	result_factory – A callable which takes this Connection
and the backend cursor and returns an instance of Result.

	param_mark – The dbapi paramstyle that the database backend expects.

	compile [https://docs.python.org/3/library/functions.html#compile] – The compiler to use for connections of this type.

	
result_factory

	alias of Result

	
block_access()

	Block access to the connection.

Attempts to execute statements or commit a transaction will
result in a ConnectionBlockedError exception. Rollbacks
are permitted as that operation is often used in case of
failures.

	
unblock_access()

	Unblock access to the connection.

	
execute(statement, params=None, noresult=False)

	Execute a statement with the given parameters.

	Parameters

	
	statement (Expr or str [https://docs.python.org/3/library/stdtypes.html#str]) – The statement to execute. It will be
compiled if necessary.

	noresult – If True, no result will be returned.

	Raises

	
	ConnectionBlockedError – Raised if access to the connection
has been blocked with block_access.

	DisconnectionError – Raised when the connection is lost.
Reconnection happens automatically on rollback.

	Returns

	The result of self.result_factory, or None if
noresult is True.

	
close()

	Close the connection if it is not already closed.

	
begin(xid)

	Begin a two-phase transaction.

	
prepare()

	Run the prepare phase of a two-phase transaction.

	
commit(xid=None)

	Commit the connection.

	Parameters

	xid – Optionally the Xid of a previously prepared
transaction to commit. This form should be called outside
of a transaction, and is intended for use in recovery.

	Raises

	
	ConnectionBlockedError – Raised if access to the connection
has been blocked with block_access.

	DisconnectionError – Raised when the connection is lost.
Reconnection happens automatically on rollback.

	
recover()

	Return a list of Xids representing pending transactions.

	
rollback(xid=None)

	Rollback the connection.

	Parameters

	xid – Optionally the Xid of a previously prepared
transaction to rollback. This form should be called outside
of a transaction, and is intended for use in recovery.

	
static to_database(params)

	Convert some parameters into values acceptable to a database backend.

It is acceptable to override this method in subclasses, but it
is not intended to be used externally.

This delegates conversion to any
Variables in the parameter list, and
passes through all other values untouched.

	
build_raw_cursor()

	Get a new dbapi cursor object.

It is acceptable to override this method in subclasses, but it
is not intended to be called externally.

	
raw_execute(statement, params=None)

	Execute a raw statement with the given parameters.

It’s acceptable to override this method in subclasses, but it
is not intended to be called externally.

If the global DEBUG is True, the statement will be printed
to standard out.

	Returns

	The dbapi cursor object, as fetched from build_raw_cursor.

	
is_disconnection_error(exc, extra_disconnection_errors=())

	Check whether an exception represents a database disconnection.

This should be overridden by backends to detect whichever
exception values are used to represent this condition.

	
preset_primary_key(primary_columns, primary_variables)

	Process primary variables before an insert happens.

This method may be overwritten by backends to implement custom
changes in primary variables before an insert happens.

	
class storm.database.Database(uri=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A database that can be connected to.

This should be subclassed for individual database backends.

	Variables

	connection_factory – A callable which will take this database
and should return an instance of Connection.

	
connection_factory

	alias of Connection

	
get_uri()

	Return the URI object this database was created with.

	
connect(event=None)

	Create a connection to the database.

It calls self.connection_factory to allow for ease of
customization.

	Parameters

	event – The event system to broadcast messages with. If
not specified, then no events will be broadcast.

	Returns

	An instance of Connection.

	
raw_connect()

	Create a raw database connection.

This is used by Connection objects to connect to the
database. It should be overriden in subclasses to do any
database-specific connection setup.

	Returns

	A DB-API connection object.

	
storm.database.register_scheme(scheme, factory)

	Register a handler for a new database URI scheme.

	Parameters

	
	scheme – the database URI scheme

	factory – a function taking a URI instance and returning a database.

	
storm.database.create_database(uri)

	Create a database instance.

	Parameters

	uri – An URI instance, or a string describing the URI. Some examples:

	“sqlite:”

	An in memory sqlite database.

	“sqlite:example.db”

	A SQLite database called example.db

	“postgres:test”

	The database ‘test’ from the local postgres server.

	“postgres://user:password@host/test”

	The database test on machine host with supplied user credentials,
using postgres.

	“anything:…”

	Where ‘anything’ has previously been registered with
register_scheme.

PostgreSQL

	
class storm.databases.postgres.Returning(expr, columns=None)

	Bases: storm.expr.Expr

Appends the “RETURNING <columns>” suffix to an INSERT or UPDATE.

	Parameters

	
	expr – an Insert or Update expression.

	columns – The columns to return, if None [https://docs.python.org/3/library/constants.html#None] then
expr.primary_columns will be used.

This is only supported in PostgreSQL 8.2+.

	
class storm.databases.postgres.Case(cases, expression=Undef, default=Undef)

	Bases: storm.expr.Expr

A CASE statement.

	Params cases

	a list of tuples of (condition, result) or (value, result),
if an expression is passed too.

	Parameters

	
	expression – the expression to compare (if the simple form is used).

	default – an optional default condition if no other case matches.

	
class storm.databases.postgres.currval(column)

	Bases: storm.expr.FuncExpr

	
storm.databases.postgres.compile_currval(compile, expr, state)

	Compile a currval.

This is a bit involved because we have to get escaping right. Here
are a few cases to keep in mind:

currval('thetable_thecolumn_seq')
currval('theschema.thetable_thecolumn_seq')
currval('"the schema".thetable_thecolumn_seq')
currval('theschema."the table_thecolumn_seq"')
currval('theschema."thetable_the column_seq"')
currval('"thetable_the column_seq"')
currval('"the schema"."the table_the column_seq"')

	
class storm.databases.postgres.PostgresResult(connection, raw_cursor)

	Bases: storm.database.Result

	
get_insert_identity(primary_key, primary_variables)

	Get a query which will return the row that was just inserted.

This must be overridden in database-specific subclasses.

	Return type

	storm.expr.Expr

	
class storm.databases.postgres.PostgresConnection(database, event=None)

	Bases: storm.database.Connection

	
result_factory

	alias of PostgresResult

	
execute(statement, params=None, noresult=False)

	Execute a statement with the given parameters.

This extends the Connection.execute method to add support
for automatic retrieval of inserted primary keys to link
in-memory objects with their specific rows.

	
to_database(params)

	Like Connection.to_database, but this converts datetime
types to strings, and bytes to psycopg2.Binary instances.

	
is_disconnection_error(exc, extra_disconnection_errors=())

	Check whether an exception represents a database disconnection.

This should be overridden by backends to detect whichever
exception values are used to represent this condition.

	
class storm.databases.postgres.Postgres(uri)

	Bases: storm.database.Database

	
connection_factory

	alias of PostgresConnection

	
raw_connect()

	Create a raw database connection.

This is used by Connection objects to connect to the
database. It should be overriden in subclasses to do any
database-specific connection setup.

	Returns

	A DB-API connection object.

	
storm.databases.postgres.create_from_uri

	alias of storm.databases.postgres.Postgres

	
storm.databases.postgres.make_dsn(uri)

	Convert a URI object to a PostgreSQL DSN string.

	
class storm.databases.postgres.PostgresTimeoutTracer(granularity=5)

	Bases: storm.tracer.TimeoutTracer

	
set_statement_timeout(raw_cursor, remaining_time)

	Perform the timeout setup in the raw cursor.

The database should raise an error if the next statement takes
more than the number of seconds provided in remaining_time.

Must be specialized in the backend.

	
connection_raw_execute_error(connection, raw_cursor, statement, params, error)

	Raise TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] if the given error was a timeout issue.

Must be specialized in the backend.

	
class storm.databases.postgres.JSONElement(expr1, expr2)

	Bases: storm.expr.BinaryOper

Return an element of a JSON value (by index or field name).

	
class storm.databases.postgres.JSONTextElement(expr1, expr2)

	Bases: storm.expr.BinaryOper

Return an element of a JSON value (by index or field name) as text.

	
class storm.databases.postgres.JSONVariable(*args, **kwargs)

	Bases: storm.variables.JSONVariable

	
class storm.databases.postgres.JSON(name=None, primary=False, **kwargs)

	Bases: storm.properties.SimpleProperty

	Parameters

	
	name – The name of this property.

	primary – A boolean indicating whether this property is a
primary key.

	default – The initial value of this variable. The default
behavior is for the value to stay undefined until it is
set with set [https://docs.python.org/3/library/stdtypes.html#set].

	default_factory – If specified, this will immediately be
called to get the initial value.

	allow_none – A boolean indicating whether None should be
allowed to be set as the value of this variable.

	validator – Validation function called whenever trying to
set the variable to a non-db value. The function should
look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory()
(or None, if this parameter isn’t provided) and the value of
validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return
the value to be used in place of the original value otherwise.

	kwargs – Other keyword arguments passed through when
constructing the underlying variable.

	
variable_class

	alias of JSONVariable

SQLite

	
class storm.databases.sqlite.SQLiteResult(connection, raw_cursor)

	Bases: storm.database.Result

	
get_insert_identity(primary_key, primary_variables)

	Get a query which will return the row that was just inserted.

This must be overridden in database-specific subclasses.

	Return type

	storm.expr.Expr

	
static set_variable(variable, value)

	Set the given variable’s value from the database.

	
static from_database(row)

	Convert SQLite-specific datatypes to “normal” Python types.

On Python 2, if there are any buffer instances in the row,
convert them to bytes. On Python 3, BLOB types are converted to
bytes, which is already what we want.

	
class storm.databases.sqlite.SQLiteConnection(database, event=None)

	Bases: storm.database.Connection

	
result_factory

	alias of SQLiteResult

	
static to_database(params)

	Like Connection.to_database, but this also converts
instances of datetime [https://docs.python.org/3/library/datetime.html#module-datetime] types to strings, and (on Python 2) bytes
instances to buffer instances.

	
commit()

	Commit the connection.

	Parameters

	xid – Optionally the Xid of a previously prepared
transaction to commit. This form should be called outside
of a transaction, and is intended for use in recovery.

	Raises

	
	ConnectionBlockedError – Raised if access to the connection
has been blocked with block_access.

	DisconnectionError – Raised when the connection is lost.
Reconnection happens automatically on rollback.

	
rollback()

	Rollback the connection.

	Parameters

	xid – Optionally the Xid of a previously prepared
transaction to rollback. This form should be called outside
of a transaction, and is intended for use in recovery.

	
raw_execute(statement, params=None, _end=False)

	Execute a raw statement with the given parameters.

This method will automatically retry on locked database errors.
This should be done by pysqlite, but it doesn’t work with
versions < 2.3.4, so we make sure the timeout is respected
here.

	
class storm.databases.sqlite.SQLite(uri)

	Bases: storm.database.Database

	
connection_factory

	alias of SQLiteConnection

	
raw_connect()

	Create a raw database connection.

This is used by Connection objects to connect to the
database. It should be overriden in subclasses to do any
database-specific connection setup.

	Returns

	A DB-API connection object.

	
storm.databases.sqlite.create_from_uri

	alias of storm.databases.sqlite.SQLite

Transaction identifiers

	
class storm.xid.Xid(format_id, global_transaction_id, branch_qualifier)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represent a transaction identifier compliant with the XA specification.

Hooks and events

Event

	
class storm.event.EventSystem(owner)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A system for managing hooks that are called when events are emitted.

Hooks are callables that take the event system owner as their first
argument, followed by the arguments passed when emitting the event,
followed by any additional data arguments given when registering the
hook.

Hooks registered for a given event name are stored without ordering:
no particular call order may be assumed when an event is emitted.

	Parameters

	owner – The object that owns this event system. It is passed
as the first argument to each hook function.

	
hook(name, callback, *data)

	Register a hook.

	Parameters

	
	name – The name of the event for which this hook should be
called.

	callback – A callable which should be called when the event is
emitted.

	data – Additional arguments to pass to the callable, after the
owner and any arguments passed when emitting the event.

	
unhook(name, callback, *data)

	Unregister a hook.

This ignores attempts to unregister hooks that were not already
registered.

	Parameters

	
	name – The name of the event for which this hook should no
longer be called.

	callback – The callable to unregister.

	data – Additional arguments that were passed when registering
the callable.

	
emit(name, *args)

	Emit an event, calling any registered hooks.

	Parameters

	
	name – The name of the event.

	args – Additional arguments to pass to hooks.

Tracer

	
class storm.tracer.TimeoutTracer(granularity=5)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provide a timeout facility for connections to prevent rogue operations.

This tracer must be subclassed by backend-specific implementations that
override connection_raw_execute_error, set_statement_timeout and
get_remaining_time methods.

	
connection_raw_execute(connection, raw_cursor, statement, params)

	Check timeout conditions before a statement is executed.

	Parameters

	
	connection – The Connection to the database.

	raw_cursor – A cursor object, specific to the backend being used.

	statement – The SQL statement to execute.

	params – The parameters to use with statement.

	Raises

	TimeoutError – Raised if there isn’t enough time left to
execute statement.

	
connection_raw_execute_error(connection, raw_cursor, statement, params, error)

	Raise TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] if the given error was a timeout issue.

Must be specialized in the backend.

	
connection_commit(connection, xid=None)

	Reset Connection._timeout_tracer_remaining_time.

	Parameters

	
	connection – The Connection to the database.

	xid – Optionally the Xid of a previously prepared
transaction to commit.

	
connection_rollback(connection, xid=None)

	Reset Connection._timeout_tracer_remaining_time.

	Parameters

	
	connection – The Connection to the database.

	xid – Optionally the Xid of a previously prepared
transaction to rollback.

	
set_statement_timeout(raw_cursor, remaining_time)

	Perform the timeout setup in the raw cursor.

The database should raise an error if the next statement takes
more than the number of seconds provided in remaining_time.

Must be specialized in the backend.

	
get_remaining_time()

	Tells how much time the current context (HTTP request, etc) has.

Must be specialized with application logic.

	Returns

	Number of seconds allowed for the next statement.

	
class storm.tracer.BaseStatementTracer

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Storm tracer base class that does query interpolation.

	
class storm.tracer.TimelineTracer(timeline_factory, prefix='SQL-')

	Bases: storm.tracer.BaseStatementTracer

Storm tracer class to insert executed statements into a Timeline.

For more information on timelines see the module at
https://pypi.org/project/timeline/.

The timeline to use is obtained by calling the timeline_factory supplied to
the constructor. This simple function takes no parameters and returns a
timeline to use. If it returns None, the tracer is bypassed.

Create a TimelineTracer.

	Parameters

	
	timeline_factory – A factory function to produce the timeline to
record a query against.

	prefix – A prefix to give the connection name when starting an
action. Connection names are found by trying a getattr for ‘name’
on the connection object. If no name has been assigned, ‘<unknown>’
is used instead.

Miscellaneous

Cache

	
class storm.cache.Cache(size=1000)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Prevents recently used objects from being deallocated.

This prevents recently used objects from being deallocated by Python
even if the user isn’t holding any strong references to it. It does
that by holding strong references to the objects referenced by the
last N obj_infos added to it (where N is the cache size).

	
clear()

	Clear the entire cache at once.

	
add(obj_info)

	Add obj_info as the most recent entry in the cache.

If the obj_info is already in the cache, it remains in the
cache and has its order changed to become the most recent entry
(IOW, will be the last to leave).

	
remove(obj_info)

	Remove obj_info from the cache, if present.

	Returns

	True if obj_info was cached, False otherwise.

	
set_size(size)

	Set the maximum number of objects that may be held in this cache.

If the size is reduced, older obj_infos may be dropped from
the cache to respect the new size.

	
get_cached()

	Return an ordered list of the currently cached obj_infos.

The most recently added objects come first in the list.

	
class storm.cache.GenerationalCache(size=1000)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generational replacement for Storm’s LRU cache.

This cache approximates LRU without keeping exact track. Instead,
it keeps a primary dict of “recently used” objects plus a similar,
secondary dict of objects used in a previous timeframe.

When the “most recently used” dict reaches its size limit, it is
demoted to secondary dict and a fresh primary dict is set up. The
previous secondary dict is evicted in its entirety.

Use this to replace the LRU cache for sizes where LRU tracking
overhead becomes too large (e.g. 100,000 objects) or the
StupidCache when it eats up too much memory.

Create a generational cache with the given size limit.

The size limit applies not to the overall cache, but to the
primary one only. When this reaches the size limit, the real
number of cached objects will be somewhere between size and
2*size depending on how much overlap there is between the
primary and secondary caches.

	
clear()

	See Cache.clear.

Clears both the primary and the secondary caches.

	
add(obj_info)

	See Cache.add.

	
remove(obj_info)

	See Cache.remove.

	
set_size(size)

	See Cache.set_size.

After calling this, the cache may still contain more than size
objects, but no more than twice that number.

	
get_cached()

	See Cache.get_cached.

The result is a loosely-ordered list. Any object in the primary
generation comes before any object that is only in the secondary
generation, but objects within a generation are not ordered and
there is no indication of the boundary between the two.

Objects that are in both the primary and the secondary
generation are listed only as part of the primary generation.

Exceptions

	
exception storm.exceptions.StormError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception storm.exceptions.CompileError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.NoTableError

	Bases: storm.exceptions.CompileError

	
exception storm.exceptions.ExprError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.NoneError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.PropertyPathError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.ClassInfoError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.URIError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.ClosedError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.FeatureError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.DatabaseModuleError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.StoreError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.NoStoreError

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.WrongStoreError

	Bases: storm.exceptions.StoreError

	
exception storm.exceptions.NotFlushedError

	Bases: storm.exceptions.StoreError

	
exception storm.exceptions.OrderLoopError

	Bases: storm.exceptions.StoreError

	
exception storm.exceptions.NotOneError

	Bases: storm.exceptions.StoreError

	
exception storm.exceptions.UnorderedError

	Bases: storm.exceptions.StoreError

	
exception storm.exceptions.LostObjectError

	Bases: storm.exceptions.StoreError

	
exception storm.exceptions.Error

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.Warning

	Bases: storm.exceptions.StormError

	
exception storm.exceptions.InterfaceError

	Bases: storm.exceptions.Error

	
exception storm.exceptions.DatabaseError

	Bases: storm.exceptions.Error

	
exception storm.exceptions.InternalError

	Bases: storm.exceptions.DatabaseError

	
exception storm.exceptions.OperationalError

	Bases: storm.exceptions.DatabaseError

	
exception storm.exceptions.ProgrammingError

	Bases: storm.exceptions.DatabaseError

	
exception storm.exceptions.IntegrityError

	Bases: storm.exceptions.DatabaseError

	
exception storm.exceptions.DataError

	Bases: storm.exceptions.DatabaseError

	
exception storm.exceptions.NotSupportedError

	Bases: storm.exceptions.DatabaseError

	
exception storm.exceptions.DisconnectionError

	Bases: storm.exceptions.OperationalError

	
exception storm.exceptions.TimeoutError(statement, params, message=None)

	Bases: storm.exceptions.StormError

Raised by timeout tracers when remining time is over.

	
exception storm.exceptions.ConnectionBlockedError

	Bases: storm.exceptions.StormError

Raised when an attempt is made to use a blocked connection.

	
storm.exceptions.wrap_exceptions(database)

	Context manager that re-raises DB exceptions as StormError instances.

Info

	
class storm.info.ClassInfo(cls)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Persistent Storm-related information of a class.

The following attributes are defined:

	Variables

	
	table – Expression from where columns will be looked up.

	cls – Class which should be used to build objects.

	columns – Tuple of column properties found in the class.

	primary_key – Tuple of column properties used to form the primary key

	primary_key_pos – Position of primary_key items in the columns tuple.

	
class storm.info.ObjectInfo(obj)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class storm.info.ClassAlias

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Create a named alias for a Storm class for use in queries.

This is useful basically when the SQL ‘AS’ feature is desired in code using
Storm queries.

ClassAliases which are explicitly named (i.e., when ‘name’ is passed) are
cached for as long as the class exists, such that the alias returned from
ClassAlias(Foo, 'foo_alias') will be the same object no matter how many
times it’s called.

	Parameters

	
	cls – The class to create the alias of.

	name – If provided, specify the name of the alias to create.

Testing

	
class storm.testing.CaptureTracer

	Bases: storm.tracer.BaseStatementTracer, fixtures.fixture.Fixture

Trace SQL statements appending them to a list [https://docs.python.org/3/library/stdtypes.html#list].

Example:

with CaptureTracer() as tracer:
 # Run queries
print(tracer.queries) # Print the queries that have been run

	Note

	This class requires the fixtures package to be available.

Timezone

This module offers extensions to the standard python 2.3+
datetime module.

	
class storm.tz.tzutc

	Bases: datetime.tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo]

	
utcoffset(dt)

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

	
dst(dt)

	datetime -> DST offset as timedelta positive east of UTC.

	
tzname(dt)

	datetime -> string name of time zone.

	
class storm.tz.tzoffset(name, offset)

	Bases: datetime.tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo]

	
utcoffset(dt)

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

	
dst(dt)

	datetime -> DST offset as timedelta positive east of UTC.

	
tzname(dt)

	datetime -> string name of time zone.

	
class storm.tz.tzlocal

	Bases: datetime.tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo]

	
utcoffset(dt)

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

	
dst(dt)

	datetime -> DST offset as timedelta positive east of UTC.

	
tzname(dt)

	datetime -> string name of time zone.

	
class storm.tz.tzfile(fileobj)

	Bases: datetime.tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo]

	
utcoffset(dt)

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

	
dst(dt)

	datetime -> DST offset as timedelta positive east of UTC.

	
tzname(dt)

	datetime -> string name of time zone.

	
class storm.tz.tzrange(stdabbr, stdoffset=None, dstabbr=None, dstoffset=None, start=None, end=None)

	Bases: datetime.tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo]

	
utcoffset(dt)

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

	
dst(dt)

	datetime -> DST offset as timedelta positive east of UTC.

	
tzname(dt)

	datetime -> string name of time zone.

	
class storm.tz.tzstr(s)

	Bases: storm.tz.tzrange

URIs

	
class storm.uri.URI(uri_str)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A representation of a Uniform Resource Identifier (URI).

This is intended exclusively for database connection URIs.

	Variables

	
	username – The username part of the URI, or None [https://docs.python.org/3/library/constants.html#None].

	password – The password part of the URI, or None [https://docs.python.org/3/library/constants.html#None].

	host – The host part of the URI, or None [https://docs.python.org/3/library/constants.html#None].

	port – The port part of the URI, or None [https://docs.python.org/3/library/constants.html#None].

	database – The part of the URI representing the database name, or
None [https://docs.python.org/3/library/constants.html#None].

WSGI

Glue to wire a storm timeline tracer up to a WSGI app.

	
storm.wsgi.make_app(app)

	Capture the per-request timeline object needed for Storm tracing.

To use firstly make your app and then wrap it with this make_app:

>>> app, find_timeline = make_app(app)

Then wrap the returned app with the timeline app (or anything that
sets environ['timeline.timeline']):

>>> app = timeline.wsgi.make_app(app)

Finally install a timeline tracer to capture Storm queries:

>>> install_tracer(TimelineTracer(find_timeline))

	Returns

	A wrapped WSGI app and a timeline factory function for use with
TimelineTracer.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 storm	

 	
 	
 storm.base	

 	
 	
 storm.cache	

 	
 	
 storm.database	

 	
 	
 storm.databases.postgres	

 	
 	
 storm.databases.sqlite	

 	
 	
 storm.event	

 	
 	
 storm.exceptions	

 	
 	
 storm.expr	

 	
 	
 storm.info	

 	
 	
 storm.properties	

 	
 	
 storm.references	

 	
 	
 storm.sqlobject	

 	
 	
 storm.store	

 	
 	
 storm.testing	

 	
 	
 storm.tracer	

 	
 	
 storm.tz	

 	
 	
 storm.uri	

 	
 	
 storm.variables	

 	
 	
 storm.wsgi	

 	
 	
 storm.xid	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	Add (class in storm.expr)

 	add() (storm.cache.Cache method)

 	(storm.cache.GenerationalCache method)

 	(storm.store.Store method)

 	add_class() (storm.properties.PropertyRegistry method)

 	add_flush_order() (storm.store.Store method)

 	add_property() (storm.properties.PropertyRegistry method)

 	add_reserved_words() (storm.expr.Compile method)

 	Alias (class in storm.expr)

 	
 	And (class in storm.expr)

 	AND (in module storm.sqlobject)

 	any() (storm.store.ResultSet method)

 	Asc (class in storm.expr)

 	AutoReload (in module storm.store)

 	autoreload() (storm.store.Store method)

 	AutoTables (class in storm.expr)

 	Avg (class in storm.expr)

 	avg() (storm.store.ResultSet method)

B

 	
 	BaseStatementTracer (class in storm.tracer)

 	begin() (storm.database.Connection method)

 	(storm.store.Store method)

 	BinaryExpr (class in storm.expr)

 	BinaryOper (class in storm.expr)

 	block_access (class in storm.store)

 	block_access() (storm.database.Connection method)

 	(storm.store.Store method)

 	
 	block_implicit_flushes() (storm.store.Store method)

 	Bool (class in storm.properties)

 	BoolCol (class in storm.sqlobject)

 	BoolVariable (class in storm.variables)

 	build_raw_cursor() (storm.database.Connection method)

 	build_tables() (in module storm.expr)

 	Bytes (class in storm.properties)

 	BytesVariable (class in storm.variables)

C

 	
 	Cache (class in storm.cache)

 	cached() (storm.store.ResultSet method)

 	CaptureTracer (class in storm.testing)

 	Case (class in storm.databases.postgres)

 	Cast (class in storm.expr)

 	checkpoint() (storm.variables.Variable method)

 	ClassAlias (class in storm.info)

 	ClassInfo (class in storm.info)

 	ClassInfoError

 	clear() (storm.cache.Cache method)

 	(storm.cache.GenerationalCache method)

 	(storm.properties.PropertyRegistry method)

 	close() (storm.database.Connection method)

 	(storm.database.Result method)

 	(storm.store.Store method)

 	ClosedError

 	Coalesce (class in storm.expr)

 	Column (class in storm.expr)

 	commit() (storm.database.Connection method)

 	(storm.databases.sqlite.SQLiteConnection method)

 	(storm.store.Store method)

 	ComparableExpr (class in storm.expr)

 	Compile (class in storm.expr)

 	compile_cast() (in module storm.expr)

 	compile_currval() (in module storm.databases.postgres)

 	CompileError

 	
 	CompilePython (class in storm.expr)

 	CompoundExpr (class in storm.expr)

 	CompoundOper (class in storm.expr)

 	config() (storm.store.ResultSet method)

 	connect() (storm.database.Database method)

 	Connection (class in storm.database)

 	connection_commit() (storm.tracer.TimeoutTracer method)

 	connection_factory (storm.database.Database attribute)

 	(storm.databases.postgres.Postgres attribute)

 	(storm.databases.sqlite.SQLite attribute)

 	connection_raw_execute() (storm.tracer.TimeoutTracer method)

 	connection_raw_execute_error() (storm.databases.postgres.PostgresTimeoutTracer method)

 	(storm.tracer.TimeoutTracer method)

 	connection_rollback() (storm.tracer.TimeoutTracer method)

 	ConnectionBlockedError

 	CONTAINSSTRING (class in storm.sqlobject)

 	Context (class in storm.expr)

 	copy() (storm.store.ResultSet method)

 	(storm.variables.Variable method)

 	Count (class in storm.expr)

 	count() (storm.store.ResultSet method)

 	create_child() (storm.expr.Compile method)

 	create_database() (in module storm.database)

 	create_from_uri (in module storm.databases.postgres)

 	(in module storm.databases.sqlite)

 	currval (class in storm.databases.postgres)

D

 	
 	Database (class in storm.database)

 	DatabaseError

 	DatabaseModuleError

 	DataError

 	Date (class in storm.properties)

 	DateCol (class in storm.sqlobject)

 	DateTime (class in storm.properties)

 	DateTimeVariable (class in storm.variables)

 	DateVariable (class in storm.variables)

 	Decimal (class in storm.properties)

 	DecimalVariable (class in storm.variables)

 	Delete (class in storm.expr)

 	
 	delete() (storm.variables.Variable method)

 	Desc (class in storm.expr)

 	DESC (in module storm.sqlobject)

 	difference() (storm.store.ResultSet method)

 	DisconnectionError

 	Distinct (class in storm.expr)

 	Div (class in storm.expr)

 	dst() (storm.tz.tzfile method)

 	(storm.tz.tzlocal method)

 	(storm.tz.tzoffset method)

 	(storm.tz.tzrange method)

 	(storm.tz.tzutc method)

E

 	
 	emit() (storm.event.EventSystem method)

 	EmptyResultSet (class in storm.store)

 	Enum (class in storm.properties)

 	EnumVariable (class in storm.variables)

 	Eq (class in storm.expr)

 	Error

 	EventSystem (class in storm.event)

 	
 	Except (class in storm.expr)

 	execute() (storm.database.Connection method)

 	(storm.databases.postgres.PostgresConnection method)

 	(storm.store.Store method)

 	Exists (class in storm.expr)

 	Expr (class in storm.expr)

 	ExprError

F

 	
 	FeatureError

 	find() (storm.store.ResultSet method)

 	(storm.store.Store method)

 	(storm.store.TableSet method)

 	first() (storm.store.ResultSet method)

 	Float (class in storm.properties)

 	FloatCol (class in storm.sqlobject)

 	
 	FloatVariable (class in storm.variables)

 	flush() (storm.store.Store method)

 	from_database() (storm.database.Result static method)

 	(storm.databases.sqlite.SQLiteResult static method)

 	FromExpr (class in storm.expr)

 	Func (class in storm.expr)

 	FuncExpr (class in storm.expr)

G

 	
 	Ge (class in storm.expr)

 	GenerationalCache (class in storm.cache)

 	get() (storm.properties.PropertyRegistry method)

 	(storm.store.Store method)

 	(storm.variables.Variable method)

 	get_all() (storm.database.Result method)

 	get_cached() (storm.cache.Cache method)

 	(storm.cache.GenerationalCache method)

 	get_database() (storm.store.Store method)

 	get_insert_identity() (storm.database.Result method)

 	(storm.databases.postgres.PostgresResult method)

 	(storm.databases.sqlite.SQLiteResult method)

 	
 	get_lazy() (storm.variables.Variable method)

 	get_one() (storm.database.Result method)

 	get_remaining_time() (storm.tracer.TimeoutTracer method)

 	get_select_expr() (storm.store.EmptyResultSet method)

 	(storm.store.ResultSet method)

 	get_state() (storm.variables.ListVariable method)

 	(storm.variables.Variable method)

 	get_uri() (storm.database.Database method)

 	group_by() (storm.store.ResultSet method)

 	Gt (class in storm.expr)

H

 	
 	has_changed() (storm.variables.Variable method)

 	
 	having() (storm.store.ResultSet method)

 	hook() (storm.event.EventSystem method)

I

 	
 	In (class in storm.expr)

 	IN (in module storm.sqlobject)

 	Insert (class in storm.expr)

 	Int (class in storm.properties)

 	IntCol (class in storm.sqlobject)

 	IntegrityError

 	InterfaceError

 	InternalError

 	Intersect (class in storm.expr)

 	
 	intersection() (storm.store.ResultSet method)

 	IntervalCol (class in storm.sqlobject)

 	IntVariable (class in storm.variables)

 	invalidate() (storm.store.Store method)

 	is_defined() (storm.variables.Variable method)

 	is_disconnection_error() (storm.database.Connection method)

 	(storm.databases.postgres.PostgresConnection method)

 	is_empty() (storm.sqlobject.SQLObjectResultSet method)

 	(storm.store.ResultSet method)

 	is_safe_token() (in module storm.expr)

J

 	
 	Join (class in storm.expr)

 	JoinExpr (class in storm.expr)

 	JSON (class in storm.databases.postgres)

 	(class in storm.properties)

 	
 	JSONElement (class in storm.databases.postgres)

 	JSONTextElement (class in storm.databases.postgres)

 	JSONVariable (class in storm.databases.postgres)

 	(class in storm.variables)

L

 	
 	last() (storm.store.ResultSet method)

 	LazyValue (class in storm.variables)

 	Le (class in storm.expr)

 	LeftJoin (class in storm.expr)

 	Like (class in storm.expr)

 	LIKE (in module storm.sqlobject)

 	
 	List (class in storm.properties)

 	ListVariable (class in storm.variables)

 	LostObjectError

 	Lower (class in storm.expr)

 	LShift (class in storm.expr)

 	Lt (class in storm.expr)

M

 	
 	make_app() (in module storm.wsgi)

 	make_dsn() (in module storm.databases.postgres)

 	Max (class in storm.expr)

 	max() (storm.store.ResultSet method)

 	
 	Min (class in storm.expr)

 	min() (storm.store.ResultSet method)

 	Mod (class in storm.expr)

 	Mul (class in storm.expr)

N

 	
 	name (storm.expr.Func attribute)

 	NamedFunc (class in storm.expr)

 	NaturalJoin (class in storm.expr)

 	NaturalLeftJoin (class in storm.expr)

 	NaturalRightJoin (class in storm.expr)

 	Ne (class in storm.expr)

 	Neg (class in storm.expr)

 	NonAssocBinaryOper (class in storm.expr)

 	
 	NoneError

 	NoStoreError

 	Not (class in storm.expr)

 	NOT (in module storm.sqlobject)

 	NoTableError

 	NotFlushedError

 	NotOneError

 	NotSupportedError

O

 	
 	ObjectInfo (class in storm.info)

 	of() (storm.store.Store static method)

 	one() (storm.store.ResultSet method)

 	OperationalError

 	
 	Or (class in storm.expr)

 	OR (in module storm.sqlobject)

 	order_by() (storm.store.ResultSet method)

 	OrderLoopError

P

 	
 	parse_get() (storm.variables.DecimalVariable static method)

 	(storm.variables.EnumVariable method)

 	(storm.variables.ListVariable method)

 	(storm.variables.UUIDVariable method)

 	(storm.variables.Variable method)

 	parse_set() (storm.variables.BoolVariable method)

 	(storm.variables.BytesVariable method)

 	(storm.variables.DateTimeVariable method)

 	(storm.variables.DateVariable method)

 	(storm.variables.DecimalVariable static method)

 	(storm.variables.EnumVariable method)

 	(storm.variables.FloatVariable method)

 	(storm.variables.IntVariable method)

 	(storm.variables.ListVariable method)

 	(storm.variables.TimeDeltaVariable method)

 	(storm.variables.TimeVariable method)

 	(storm.variables.UUIDVariable method)

 	(storm.variables.UnicodeVariable method)

 	(storm.variables.Variable method)

 	
 	Pickle (class in storm.properties)

 	PickleVariable (class in storm.variables)

 	pop() (storm.expr.State method)

 	Postgres (class in storm.databases.postgres)

 	PostgresConnection (class in storm.databases.postgres)

 	PostgresResult (class in storm.databases.postgres)

 	PostgresTimeoutTracer (class in storm.databases.postgres)

 	PrefixExpr (class in storm.expr)

 	prepare() (storm.database.Connection method)

 	(storm.store.Store method)

 	preset_primary_key() (storm.database.Connection method)

 	ProgrammingError

 	Property (class in storm.properties)

 	PropertyPathError

 	PropertyRegistry (class in storm.properties)

 	Proxy (class in storm.references)

 	Proxy.RemoteProp (class in storm.references)

 	push() (storm.expr.State method)

R

 	
 	raw_connect() (storm.database.Database method)

 	(storm.databases.postgres.Postgres method)

 	(storm.databases.sqlite.SQLite method)

 	raw_execute() (storm.database.Connection method)

 	(storm.databases.sqlite.SQLiteConnection method)

 	RawStr (in module storm.properties)

 	RawStrVariable (in module storm.variables)

 	recover() (storm.database.Connection method)

 	Reference (class in storm.references)

 	ReferenceSet (class in storm.references)

 	register_scheme() (in module storm.database)

 	reload() (storm.store.Store method)

 	remove() (storm.cache.Cache method)

 	(storm.cache.GenerationalCache method)

 	(storm.store.ResultSet method)

 	(storm.store.Store method)

 	
 	remove_flush_order() (storm.store.Store method)

 	reset() (storm.store.Store method)

 	Result (class in storm.database)

 	result_factory (storm.database.Connection attribute)

 	(storm.databases.postgres.PostgresConnection attribute)

 	(storm.databases.sqlite.SQLiteConnection attribute)

 	ResultSet (class in storm.store)

 	Returning (class in storm.databases.postgres)

 	RightJoin (class in storm.expr)

 	rollback() (storm.database.Connection method)

 	(storm.databases.sqlite.SQLiteConnection method)

 	(storm.store.Store method)

 	Row (class in storm.expr)

 	rowcount (storm.database.Result attribute)

 	RShift (class in storm.expr)

S

 	
 	Select (class in storm.expr)

 	Sequence (class in storm.expr)

 	set() (storm.store.ResultSet method)

 	(storm.variables.Variable method)

 	set_size() (storm.cache.Cache method)

 	(storm.cache.GenerationalCache method)

 	set_state() (storm.variables.ListVariable method)

 	(storm.variables.Variable method)

 	set_statement_timeout() (storm.databases.postgres.PostgresTimeoutTracer method)

 	(storm.tracer.TimeoutTracer method)

 	set_variable() (storm.database.Result static method)

 	(storm.databases.sqlite.SQLiteResult static method)

 	SetExpr (class in storm.expr)

 	SimpleProperty (class in storm.properties)

 	SingleJoin (class in storm.sqlobject)

 	SQL (class in storm.expr)

 	SQLConstant (in module storm.sqlobject)

 	SQLite (class in storm.databases.sqlite)

 	SQLiteConnection (class in storm.databases.sqlite)

 	SQLiteResult (class in storm.databases.sqlite)

 	SQLMultipleJoin (class in storm.sqlobject)

 	SQLObjectBase (class in storm.sqlobject)

 	SQLObjectMoreThanOneResultError (in module storm.sqlobject)

 	SQLObjectNotFound

 	SQLObjectResultSet (class in storm.sqlobject)

 	SQLRaw (class in storm.expr)

 	SQLRelatedJoin (in module storm.sqlobject)

 	SQLToken (class in storm.expr)

 	State (class in storm.expr)

 	
 	Store (class in storm.store)

 	StoreError

 	Storm (class in storm.base)

 	storm.base (module)

 	storm.cache (module)

 	storm.database (module)

 	storm.databases.postgres (module)

 	storm.databases.sqlite (module)

 	storm.event (module)

 	storm.exceptions (module)

 	storm.expr (module)

 	storm.info (module)

 	storm.properties (module)

 	storm.references (module)

 	storm.sqlobject (module)

 	storm.store (module)

 	storm.testing (module)

 	storm.tracer (module)

 	storm.tz (module)

 	storm.uri (module)

 	storm.variables (module)

 	storm.wsgi (module)

 	storm.xid (module)

 	StormError

 	StringCol (class in storm.sqlobject)

 	Sub (class in storm.expr)

 	SuffixExpr (class in storm.expr)

 	Sum (class in storm.expr)

 	sum() (storm.store.ResultSet method)

T

 	
 	Table (class in storm.expr)

 	TableSet (class in storm.store)

 	Time (class in storm.properties)

 	TimeDelta (class in storm.properties)

 	TimeDeltaVariable (class in storm.variables)

 	TimelineTracer (class in storm.tracer)

 	TimeoutError

 	TimeoutTracer (class in storm.tracer)

 	TimeVariable (class in storm.variables)

 	to_database() (storm.database.Connection static method)

 	(storm.databases.postgres.PostgresConnection method)

 	(storm.databases.sqlite.SQLiteConnection static method)

 	
 	tzfile (class in storm.tz)

 	tzlocal (class in storm.tz)

 	tzname() (storm.tz.tzfile method)

 	(storm.tz.tzlocal method)

 	(storm.tz.tzoffset method)

 	(storm.tz.tzrange method)

 	(storm.tz.tzutc method)

 	tzoffset (class in storm.tz)

 	tzrange (class in storm.tz)

 	tzstr (class in storm.tz)

 	tzutc (class in storm.tz)

U

 	
 	unblock_access() (storm.database.Connection method)

 	(storm.store.Store method)

 	unblock_implicit_flushes() (storm.store.Store method)

 	unhook() (storm.event.EventSystem method)

 	Unicode (class in storm.properties)

 	UnicodeVariable (class in storm.variables)

 	Union (class in storm.expr)

 	union() (storm.store.ResultSet method)

 	UnorderedError

 	Update (class in storm.expr)

 	Upper (class in storm.expr)

 	
 	URI (class in storm.uri)

 	URIError

 	using() (storm.store.Store method)

 	UtcDateTimeCol (class in storm.sqlobject)

 	utcoffset() (storm.tz.tzfile method)

 	(storm.tz.tzlocal method)

 	(storm.tz.tzoffset method)

 	(storm.tz.tzrange method)

 	(storm.tz.tzutc method)

 	UUID (class in storm.properties)

 	UUIDVariable (class in storm.variables)

V

 	
 	values() (storm.store.ResultSet method)

 	Variable (class in storm.variables)

 	variable_class (storm.databases.postgres.JSON attribute)

 	(storm.properties.Bool attribute)

 	(storm.properties.Bytes attribute)

 	(storm.properties.Date attribute)

 	(storm.properties.DateTime attribute)

 	(storm.properties.Decimal attribute)

 	(storm.properties.Enum attribute)

 	(storm.properties.Float attribute)

 	(storm.properties.Int attribute)

 	(storm.properties.JSON attribute)

 	(storm.properties.List attribute)

 	(storm.properties.Pickle attribute)

 	(storm.properties.Time attribute)

 	(storm.properties.TimeDelta attribute)

 	(storm.properties.UUID attribute)

 	(storm.properties.Unicode attribute)

 	
 	VariableFactory (in module storm.variables)

W

 	
 	Warning

 	when() (storm.expr.Compile method)

 	
 	wrap_exceptions() (in module storm.exceptions)

 	WrongStoreError

X

 	
 	Xid (class in storm.xid)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Storm’s documentation!

 		
 Tutorial

 		
 Importing

 		
 Basic definition

 		
 Creating a database and the store

 		
 Creating an object

 		
 The store of an object

 		
 Finding an object

 		
 Caching behavior

 		
 Flushing

 		
 Changing objects with the Store

 		
 Committing

 		
 Rolling back

 		
 Constructors

 		
 References and subclassing

 		
 Many-to-one reference sets

 		
 Many-to-many reference sets and composed keys

 		
 Joins

 		
 Sub-selects

 		
 Ordering and limiting results

 		
 Multiple types with one query

 		
 The Storm base class

 		
 Loading hook

 		
 Executing expressions

 		
 Auto-reloading values

 		
 Expression values

 		
 Aliases

 		
 Debugging

 		
 Much more!

 		
 Infoheritance

 		
 Defining a sample model

 		
 The infoheritance pattern

 		
 Registering info classes

 		
 Creating info classes

 		
 Retrieving info classes

 		
 In-memory info objects

 		
 Zope integration

 		
 Getting stores

 		
 Committing transactions

 		
 Aborting transactions

 		
 ZCML

 		
 Security Wrappers

 		
 ResultSet interfaces

 		
 API

 		
 Locals

 		
 Store

 		
 Defining tables and columns

 		
 Base

 		
 Properties

 		
 References

 		
 Variables

 		
 SQLObject emulation

 		
 Expressions

 		
 Databases

 		
 PostgreSQL

 		
 SQLite

 		
 Transaction identifiers

 		
 Hooks and events

 		
 Event

 		
 Tracer

 		
 Miscellaneous

 		
 Cache

 		
 Exceptions

 		
 Info

 		
 Testing

 		
 Timezone

 		
 URIs

 		
 WSGI

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

