
Storm Documentation

Gustavo Niemeyer

Dec 14, 2021

Contents:

1 Tutorial 1
1.1 Importing . 1
1.2 Basic definition . 1
1.3 Creating a database and the store . 1
1.4 Creating an object . 2
1.5 The store of an object . 2
1.6 Finding an object . 2
1.7 Caching behavior . 3
1.8 Flushing . 3
1.9 Changing objects with the Store . 4
1.10 Committing . 4
1.11 Rolling back . 4
1.12 Constructors . 4
1.13 References and subclassing . 5
1.14 Many-to-one reference sets . 7
1.15 Many-to-many reference sets and composed keys . 7
1.16 Joins . 9
1.17 Sub-selects . 9
1.18 Ordering and limiting results . 10
1.19 Multiple types with one query . 10
1.20 The Storm base class . 11
1.21 Loading hook . 11
1.22 Executing expressions . 12
1.23 Auto-reloading values . 12
1.24 Expression values . 13
1.25 Aliases . 13
1.26 Debugging . 14
1.27 Much more! . 14

2 Infoheritance 15
2.1 Defining a sample model . 15
2.2 The infoheritance pattern . 16
2.3 Registering info classes . 17
2.4 Creating info classes . 18
2.5 Retrieving info classes . 18
2.6 In-memory info objects . 19

i

3 Zope integration 21
3.1 Getting stores . 21
3.2 Committing transactions . 22
3.3 Aborting transactions . 23
3.4 ZCML . 23
3.5 Security Wrappers . 24
3.6 ResultSet interfaces . 26

4 API 27
4.1 Locals . 28
4.2 Store . 29
4.3 Defining tables and columns . 36
4.4 Expressions . 61
4.5 Databases . 66
4.6 Hooks and events . 74
4.7 Miscellaneous . 76

5 Indices and tables 83

Python Module Index 85

Index 87

ii

CHAPTER 1

Tutorial

1.1 Importing

Let’s start by importing some names into the namespace.

>>> from storm.locals import *

1.2 Basic definition

Now we define a type with some properties describing the information we’re about to map.

>>> class Person(object):
... __storm_table__ = "person"
... id = Int(primary=True)
... name = Unicode()

Notice that this has no Storm-defined base class or constructor.

1.3 Creating a database and the store

We still don’t have anyone to talk to, so let’s define an in-memory SQLite database to play with, and a store using that
database.

>>> database = create_database("sqlite:")
>>> store = Store(database)

Three databases are supported at the moment: SQLite, MySQL, and PostgreSQL. The parameter passed to
create_database() is an URI, as follows:

1

Storm Documentation

database = create_database(
"scheme://username:password@hostname:port/database_name")

The scheme may be sqlite, mysql, or postgres.

Now we have to create the table that will actually hold the data for our class.

>>> store.execute("CREATE TABLE person "
... "(id INTEGER PRIMARY KEY, name VARCHAR)")
<storm.databases.sqlite.SQLiteResult object at 0x...>

We got a result back, but we don’t care about it for now. We could also use noresult=True to avoid the result
entirely.

1.4 Creating an object

Let’s create an object of the defined class.

>>> joe = Person()
>>> joe.name = u"Joe Johnes"

>>> print(joe.id)
None
>>> print(joe.name)
Joe Johnes

So far this object has no connection to a database. Let’s add it to the store we’ve created above.

>>> store.add(joe)
<...Person object at 0x...>

>>> print(joe.id)
None
>>> print(joe.name)
Joe Johnes

Notice that the object wasn’t changed, even after being added to the store. That’s because it wasn’t flushed yet.

1.5 The store of an object

Once an object is added to a store, or retrieved from a store, its relation to that store is known. We can easily verify
which store an object is bound.

>>> Store.of(joe) is store
True

>>> Store.of(Person()) is None
True

1.6 Finding an object

Now, what would happen if we actually asked the store to give us the person named “Joe Johnes”?

2 Chapter 1. Tutorial

Storm Documentation

>>> person = store.find(Person, Person.name == u"Joe Johnes").one()

>>> print(person.id)
1
>>> print(person.name)
Joe Johnes

The person is there! Yeah, ok, you were expecting it. :-)

We can also retrieve the object using its primary key.

>>> print(store.get(Person, 1).name)
Joe Johnes

1.7 Caching behavior

One interesting thing is that this person is actually Joe, right? We’ve just added this object, so there’s only one Joe,
why would there be two different objects? There isn’t.

>>> person is joe
True

What’s going on behind the scenes is that each store has an object cache. When an object is linked to a store, it will
be cached by the store for as long as there’s a reference to the object somewhere, or while the object is dirty (has
unflushed changes).

Storm ensures that at least a certain number of recently used objects will stay in memory inside the transaction, so that
frequently used objects are not retrieved from the database too often.

1.8 Flushing

When we tried to find Joe in the database for the first time, we’ve noticed that the id property was magically assigned.
This happened because the object was flushed implicitly so that the operation would affect any pending changes as
well.

Flushes may also happen explicitly.

>>> mary = Person()
>>> mary.name = u"Mary Margaret"
>>> store.add(mary)
<...Person object at 0x...>

>>> print(mary.id)
None
>>> print(mary.name)
Mary Margaret

>>> store.flush()
>>> print(mary.id)
2
>>> print(mary.name)
Mary Margaret

1.7. Caching behavior 3

Storm Documentation

1.9 Changing objects with the Store

Besides changing objects as usual, we can also benefit from the fact that objects are tied to a database to change them
using expressions.

>>> store.find(
... Person, Person.name == u"Mary Margaret").set(name=u"Mary Maggie")
>>> print(mary.name)
Mary Maggie

This operation will touch every matching object in the database, and also objects that are alive in memory.

1.10 Committing

Everything we’ve done so far is inside a transaction. At this point, we can either make these changes and any pending
uncommitted changes persistent by committing them, or we can undo everything by rolling them back.

We’ll commit them, with something as simple as

>>> store.commit()

That was straightforward. Everything is still the way it was, but now changes are there “for real”.

1.11 Rolling back

Aborting changes is very straightforward as well.

>>> joe.name = u"Tom Thomas"

Let’s see if these changes are really being considered by Storm and by the database.

>>> person = store.find(Person, Person.name == u"Tom Thomas").one()
>>> person is joe
True

Yes, they are. Now, for the magic step (suspense music, please).

>>> store.rollback()

Erm.. nothing happened?

Actually, something happened.. with Joe. He’s back!

>>> print(joe.id)
1
>>> print(joe.name)
Joe Johnes

1.12 Constructors

So, we’ve been working for too long with people only. Let’s introduce a new kind of data in our model: companies.
For the company, we’ll use a constructor, just for the fun of it. It will be the simplest company class you’ve ever seen:

4 Chapter 1. Tutorial

Storm Documentation

>>> class Company(object):
... __storm_table__ = "company"
... id = Int(primary=True)
... name = Unicode()
...
... def __init__(self, name):
... self.name = name

Notice that the constructor parameter isn’t optional. It could be optional, if we wanted, but our companies always have
names.

Let’s add the table for it.

>>> store.execute(
... "CREATE TABLE company (id INTEGER PRIMARY KEY, name VARCHAR)",
... noresult=True)

Then, create a new company.

>>> circus = Company(u"Circus Inc.")

>>> print(circus.id)
None
>>> print(circus.name)
Circus Inc.

The id is still undefined because we haven’t flushed it. In fact, we haven’t even added the company to the store. We’ll
do that soon. Watch out.

1.13 References and subclassing

Now we want to assign some employees to our company. Rather than redoing the Person definition, we’ll keep it as it
is, since it’s general, and will create a new subclass of it for employees, which include one extra field: the company id.

>>> class Employee(Person):
... __storm_table__ = "employee"
... company_id = Int()
... company = Reference(company_id, Company.id)
...
... def __init__(self, name):
... self.name = name

Pay attention to that definition for a moment. Notice that it doesn’t define what’s already in person, and introduces the
company_id, and a company property, which is a reference to another class. It also has a constructor, but which
leaves the company alone.

As usual, we need a table. SQLite has no idea of what a foreign key is, so we’ll not bother to define it.

>>> store.execute(
... "CREATE TABLE employee "
... "(id INTEGER PRIMARY KEY, name VARCHAR, company_id INTEGER)",
... noresult=True)

Let’s give life to Ben now.

1.13. References and subclassing 5

Storm Documentation

>>> ben = store.add(Employee(u"Ben Bill"))

>>> print(ben.id)
None
>>> print(ben.name)
Ben Bill
>>> print(ben.company_id)
None

We can see that they were not flushed yet. Even then, we can say that Bill works on Circus.

>>> ben.company = circus

>>> print(ben.company_id)
None
>>> print(ben.company.name)
Circus Inc.

Of course, we still don’t know the company id since it was not flushed to the database yet, and we didn’t assign an id
explicitly. Storm is keeping the relationship even then.

If whatever is pending is flushed to the database (implicitly or explicitly), objects will get their ids, and any references
are updated as well (before being flushed!).

>>> store.flush()

>>> print(ben.company_id)
1
>>> print(ben.company.name)
Circus Inc.

They’re both flushed to the database. Now, notice that the Circus company wasn’t added to the store explicitly in any
moment. Storm will do that automatically for referenced objects, for both objects (the referenced and the referencing
one).

Let’s create another company to check something. This time we’ll flush the store just after adding it.

>>> sweets = store.add(Company(u"Sweets Inc."))
>>> store.flush()
>>> sweets.id
2

Nice, we’ve already got the id of the new company. So, what would happen if we changed just the id for Ben’s
company?

>>> ben.company_id = 2
>>> print(ben.company.name)
Sweets Inc.
>>> ben.company is sweets
True

Hah! That wasn’t expected, was it? ;-)

Let’s commit everything.

>>> store.commit()

6 Chapter 1. Tutorial

Storm Documentation

1.14 Many-to-one reference sets

So, while our model says that employees work for a single company (we only design normal people here), companies
may of course have multiple employees. We represent that in Storm using reference sets.

We won’t define the company again. Instead, we’ll add a new attribute to the class.

>>> Company.employees = ReferenceSet(Company.id, Employee.company_id)

Without any further work, we can already see which employees are working for a given company.

>>> sweets.employees.count()
1

>>> for employee in sweets.employees:
... print(employee.id)
... print(employee.name)
... print(employee is ben)
...
1
Ben Bill
True

Let’s create another employee, and add him to the company, rather than setting the company in the employee (it sounds
better, at least).

>>> mike = store.add(Employee(u"Mike Mayer"))
>>> sweets.employees.add(mike)

That, of course, means that Mike’s working for a company, and so it should be reflected elsewhere.

>>> mike.company_id
2

>>> mike.company is sweets
True

1.15 Many-to-many reference sets and composed keys

We want to represent accountants in our model as well. Companies have accountants, but accountants may also attend
several companies, so we’ll represent that using a many-to-many relationship.

Let’s create a simple class to use with accountants, and the relationship class.

>>> class Accountant(Person):
... __storm_table__ = "accountant"
... def __init__(self, name):
... self.name = name

>>> class CompanyAccountant(object):
... __storm_table__ = "company_accountant"
... __storm_primary__ = "company_id", "accountant_id"
... company_id = Int()
... accountant_id = Int()

1.14. Many-to-one reference sets 7

Storm Documentation

Hey, we’ve just declared a class with a composed key!

Now, let’s use it to declare the many-to-many relationship in the company. Once more, we’ll just stick the new attribute
in the existent object. It may easily be defined at class definition time. Later we’ll see another way to do that as well.

>>> Company.accountants = ReferenceSet(Company.id,
... CompanyAccountant.company_id,
... CompanyAccountant.accountant_id,
... Accountant.id)

Done! The order in which attributes were defined is important, but the logic should be pretty obvious.

We’re missing some tables, at this point.

>>> store.execute(
... "CREATE TABLE accountant (id INTEGER PRIMARY KEY, name VARCHAR)",
... noresult=True)

>>> store.execute(
... "CREATE TABLE company_accountant "
... "(company_id INTEGER, accountant_id INTEGER,"
... " PRIMARY KEY (company_id, accountant_id))",
... noresult=True)

Let’s give life to a couple of accountants, and register them in both companies.

>>> karl = Accountant(u"Karl Kent")
>>> frank = Accountant(u"Frank Fourt")

>>> sweets.accountants.add(karl)
>>> sweets.accountants.add(frank)

>>> circus.accountants.add(frank)

That’s it! Really! Notice that we didn’t even have to add them to the store, since it happens implicitly by linking to the
other object which is already in the store, and that we didn’t have to declare the relationship object, since that’s known
to the reference set.

We can now check them.

>>> sweets.accountants.count()
2

>>> circus.accountants.count()
1

Even though we didn’t use the CompanyAccountant object explicitly, we can check it if we’re really curious.

>>> store.get(CompanyAccountant, (sweets.id, frank.id))
<...CompanyAccountant object at 0x...>

Notice that we pass a tuple for the get() method, due to the composed key.

If we wanted to know for which companies accountants are working, we could easily define a reversed relationship:

>>> Accountant.companies = ReferenceSet(Accountant.id,
... CompanyAccountant.accountant_id,
... CompanyAccountant.company_id,
... Company.id)

(continues on next page)

8 Chapter 1. Tutorial

Storm Documentation

(continued from previous page)

>>> for name in sorted(company.name for company in frank.companies):
... print(name)
Circus Inc.
Sweets Inc.

>>> for company in karl.companies:
... print(company.name)
Sweets Inc.

1.16 Joins

Since we’ve got some nice data to play with, let’s try to make a few interesting queries.

Let’s start by checking which companies have at least one employee named Ben. We have at least two ways to do it.

First, with an implicit join.

>>> result = store.find(Company,
... Employee.company_id == Company.id,
... Employee.name.like(u"Ben %"))

>>> for company in result:
... print(company.name)
Sweets Inc.

Then, we can also do an explicit join. This is interesting for mapping complex SQL joins to Storm queries.

>>> origin = [Company, Join(Employee, Employee.company_id == Company.id)]
>>> result = store.using(*origin).find(
... Company, Employee.name.like(u"Ben %"))

>>> for company in result:
... print(company.name)
Sweets Inc.

If we already had the company, and wanted to know which of his employees were named Ben, that’d have been easier.

>>> result = sweets.employees.find(Employee.name.like(u"Ben %"))

>>> for employee in result:
... print(employee.name)
Ben Bill

1.17 Sub-selects

Suppose we want to find all accountants that aren’t associated with a company. We can use a sub-select to get the data
we want.

>>> laura = Accountant(u"Laura Montgomery")
>>> store.add(laura)
<...Accountant ...>

(continues on next page)

1.16. Joins 9

Storm Documentation

(continued from previous page)

>>> subselect = Select(CompanyAccountant.accountant_id, distinct=True)
>>> result = store.find(Accountant, Not(Accountant.id.is_in(subselect)))
>>> result.one() is laura
True

1.18 Ordering and limiting results

Ordering and limiting results obtained are certainly among the simplest and yet most wanted features for such tools,
so we want to make them very easy to understand and use, of course.

A line of code is worth a thousand words, so here are a few examples that demonstrate how it works:

>>> garry = store.add(Employee(u"Garry Glare"))

>>> result = store.find(Employee)

>>> for employee in result.order_by(Employee.name):
... print(employee.name)
Ben Bill
Garry Glare
Mike Mayer

>>> for employee in result.order_by(Desc(Employee.name)):
... print(employee.name)
Mike Mayer
Garry Glare
Ben Bill

>>> for employee in result.order_by(Employee.name)[:2]:
... print(employee.name)
Ben Bill
Garry Glare

1.19 Multiple types with one query

Sometimes, it may be interesting to retrieve more than one object involved in a given query. Imagine, for instance, that
besides knowing which companies have an employee named Ben, we also want to know who is the employee. This
may be achieved with a query like follows:

>>> result = store.find((Company, Employee),
... Employee.company_id == Company.id,
... Employee.name.like(u"Ben %"))

>>> for company, employee in result:
... print(company.name)
... print(employee.name)
Sweets Inc.
Ben Bill

10 Chapter 1. Tutorial

Storm Documentation

1.20 The Storm base class

So far we’ve been defining our references and reference sets using classes and their properties. This has some advan-
tages, like being easier to debug, but also has some disadvantages, such as requiring classes to be present in the local
scope, which potentially leads to circular import issues.

To prevent that kind of situation, Storm supports defining these references using the stringified version of the class and
property names. The only inconvenience of doing so is that all involved classes must inherit from the Storm base
class.

Let’s define some new classes to show that. To expose the point, we’ll refer to a class before it’s actually defined.

>>> class Country(Storm):
... __storm_table__ = "country"
... id = Int(primary=True)
... name = Unicode()
... currency_id = Int()
... currency = Reference(currency_id, "Currency.id")

>>> class Currency(Storm):
... __storm_table__ = "currency"
... id = Int(primary=True)
... symbol = Unicode()

>>> store.execute(
... "CREATE TABLE country "
... "(id INTEGER PRIMARY KEY, name VARCHAR, currency_id INTEGER)",
... noresult=True)

>>> store.execute(
... "CREATE TABLE currency (id INTEGER PRIMARY KEY, symbol VARCHAR)",
... noresult=True)

Now, let’s see if it works.

>>> real = store.add(Currency())
>>> real.id = 1
>>> real.symbol = u"BRL"

>>> brazil = store.add(Country())
>>> brazil.name = u"Brazil"
>>> brazil.currency_id = 1

>>> print(brazil.currency.symbol)
BRL

Questions!? ;-)

1.21 Loading hook

Storm allows classes to define a few different hooks are called to act when certain things happen. One of the interesting
hooks available is the __storm_loaded__ one.

Let’s play with it. We’ll define a temporary subclass of Person for that.

1.20. The Storm base class 11

Storm Documentation

>>> class PersonWithHook(Person):
... def __init__(self, name):
... print("Creating %s" % name)
... self.name = name
...
... def __storm_loaded__(self):
... print("Loaded %s" % self.name)

>>> earl = store.add(PersonWithHook(u"Earl Easton"))
Creating Earl Easton

>>> earl = store.find(PersonWithHook, name=u"Earl Easton").one()

>>> store.invalidate(earl)
>>> del earl
>>> import gc
>>> collected = gc.collect()

>>> earl = store.find(PersonWithHook, name=u"Earl Easton").one()
Loaded Earl Easton

Note that in the first find, nothing was called, since the object was still in memory and cached. Then, we invalidated
the object from Storm’s internal cache and ensured that it was out-of-memory by triggering a garbage collection. After
that, the object had to be retrieved from the database again, and thus the hook was called (and not the constructor!).

1.22 Executing expressions

Storm also offers a way to execute expressions in a database-agnostic way, when that’s necessary.

For instance:

>>> result = store.execute(Select(Person.name, Person.id == 1))
>>> (name,) = result.get_one()
>>> print(name)
Joe Johnes

This mechanism is used internally by Storm itself to implement the higher level features.

1.23 Auto-reloading values

Storm offers some special values that may be assigned to attributes under its control. One of these values is
AutoReload. When used, it will make the object automatically reload the value from the database when touched.
Even primary keys may benefit from its use, as shown below.

>>> from storm.locals import AutoReload

>>> ruy = store.add(Person())
>>> ruy.name = u"Ruy"
>>> print(ruy.id)
None

>>> ruy.id = AutoReload

(continues on next page)

12 Chapter 1. Tutorial

Storm Documentation

(continued from previous page)

>>> print(ruy.id)
4

This may be set as the default value for any attribute, making the object be automatically flushed if necessary.

1.24 Expression values

Besides auto-reloading, it’s also possible to assign what we call a “lazy expression” to an attribute. Such expres-
sions are flushed to the database when the attribute is accessed, or when the object is flushed to the database (IN-
SERT/UPDATE time).

For instance:

>>> ruy.name = SQL(
... "(SELECT name || ? FROM person WHERE id=4)", (" Ritcher",))
>>> print(ruy.name)
Ruy Ritcher

Notice that this is just an example of what may be done. There’s no need to write SQL statements this way, if you
don’t want to. You may also use class-based SQL expressions provided in Storm, or even not use lazy expressions at
all.

1.25 Aliases

So now let’s say that we want to find every pair of people that work for the same company. I have no idea about why
one would want to do that, but that’s a good case for us to exercise aliases.

First, we create an alias for the Employee class.

>>> from storm.info import ClassAlias
>>> AnotherEmployee = ClassAlias(Employee)

Nice, isn’t it?

Now we can easily make the query we want, in a straightforward way:

>>> result = store.find((Employee, AnotherEmployee),
... Employee.company_id == AnotherEmployee.company_id,
... Employee.id > AnotherEmployee.id)

>>> for employee1, employee2 in result:
... print(employee1.name)
... print(employee2.name)
Mike Mayer
Ben Bill

Woah! Mike and Ben work for the same company!

(Quiz for the attentive reader: why is greater than being used in the query above?)

1.24. Expression values 13

Storm Documentation

1.26 Debugging

Sometimes you just need to see which statements Storm is executing. A debug tracer built on top of Storm’s tracing
system can be used to see what’s going on under the hood. A tracer is an object that gets notified when interesting
events occur, such as when Storm executes a statement. A function to enable and disable statement tracing is provided.
Statements are logged to sys.stderr by default, but a custom stream may also be used.

>>> import sys
>>> from storm.tracer import debug

>>> debug(True, stream=sys.stdout)
>>> result = store.find((Employee, AnotherEmployee),
... Employee.company_id == AnotherEmployee.company_id,
... Employee.id > AnotherEmployee.id)
>>> list(result)
[...] EXECUTE: ...'SELECT employee.company_id, employee.id, employee.name, "...".
→˓company_id, "...".id, "...".name FROM employee, employee AS "..." WHERE employee.
→˓company_id = "...".company_id AND employee.id > "...".id', ()
[...] DONE
[(<...Employee object at ...>, <...Employee object at ...>)]

>>> debug(False)
>>> list(result)
[(<...Employee object at ...>, <...Employee object at ...>)]

1.27 Much more!

There’s a lot more about Storm to be shown. This tutorial is just a way to get initiated on some of the concepts. If your
questions are not answered somewhere else, feel free to ask them in the mailing list.

14 Chapter 1. Tutorial

CHAPTER 2

Infoheritance

Storm doesn’t support classes that have columns in multiple tables. This makes using inheritance rather difficult. The
infoheritance pattern described here provides a way to get the benefits of inheritance without running into the problems
Storm has with multi-table classes.

2.1 Defining a sample model

Let’s consider an inheritance hierarchy to migrate to Storm.

class Person(object):

def __init__(self, name):
self.name = name

class SecretAgent(Person):

def __init__(self, name, passcode):
super(SecretAgent, self).__init__(name)
self.passcode = passcode

class Teacher(Person):

def __init__(self, name, school):
super(Employee, self).__init__(name):
self.school = school

We want to use three tables to store data for these objects: person, secret_agent and teacher. We can’t
simply convert instance attributes to Storm properties and add __storm_table__ definitions because a single
object may not have columns that come from more than one table. We can’t have Teacher getting its name column
from the person table and its school column from the teacher table, for example.

15

Storm Documentation

2.2 The infoheritance pattern

The infoheritance pattern uses composition instead of inheritance to work around the multiple table limitation. A base
Storm class is used to represent all objects in the hierarchy. Each instance of this base class has an info property that
yields an instance of a specific info class. An info class provides the additional data and behaviour you’d normally
implement in a subclass. Following is the design from above converted to use the pattern.

>>> from storm.locals import Storm, Store, Int, Unicode, Reference

>>> person_info_types = {}

>>> def register_person_info_type(info_type, info_class):
... existing_info_class = person_info_types.get(info_type)
... if existing_info_class is not None:
... raise RuntimeError("%r has the same info_type of %r" %
... (info_class, existing_info_class))
... person_info_types[info_type] = info_class
... info_class.info_type = info_type

>>> class Person(Storm):
...
... __storm_table__ = "person"
...
... id = Int(allow_none=False, primary=True)
... name = Unicode(allow_none=False)
... info_type = Int(allow_none=False)
... _info = None
...
... def __init__(self, store, name, info_class, **kwargs):
... self.name = name
... self.info_type = info_class.info_type
... store.add(self)
... self._info = info_class(self, **kwargs)
...
... @property
... def info(self):
... if self._info is not None:
... return self._info
... assert self.id is not None
... info_class = person_info_types[self.info_type]
... if not hasattr(info_class, "__storm_table__"):
... info = info_class.__new__(info_class)
... info.person = self
... else:
... info = Store.of(self).get(info_class, self.id)
... self._info = info
... return info

>>> class PersonInfo(object):
...
... def __init__(self, person):
... self.person = person

>>> class StoredPersonInfo(PersonInfo):
(continues on next page)

16 Chapter 2. Infoheritance

Storm Documentation

(continued from previous page)

...

... person_id = Int(allow_none=False, primary=True)

... person = Reference(person_id, Person.id)

>>> class SecretAgent(StoredPersonInfo):
...
... __storm_table__ = "secret_agent"
...
... passcode = Unicode(allow_none=False)
...
... def __init__(self, person, passcode=None):
... super(SecretAgent, self).__init__(person)
... self.passcode = passcode

>>> class Teacher(StoredPersonInfo):
...
... __storm_table__ = "teacher"
...
... school = Unicode(allow_none=False)
...
... def __init__(self, person, school=None):
... super(Teacher, self).__init__(person)
... self.school = school

The pattern works by having a base class, Person, keep a reference to an info class, PersonInfo. Info classes
need to be registered so that Person can discover them and load them when necessary. Note that info types have the
same ID as their parent object. This isn’t strictly necessary, but it makes certain things easy, such as being able to look
up info objects directly by ID when given a person object. Person objects are required to be in a store to ensure that
an ID is available and can used by the info class.

2.3 Registering info classes

Let’s register our info classes. Each class must be registered with a unique info type key. This key is stored in the
database, so be sure to use a stable value.

>>> register_person_info_type(1, SecretAgent)
>>> register_person_info_type(2, Teacher)

Let’s create a database to store person objects before we continue.

>>> from storm.locals import create_database

>>> database = create_database("sqlite:")
>>> store = Store(database)
>>> result = store.execute("""
... CREATE TABLE person (
... id INTEGER PRIMARY KEY,
... info_type INTEGER NOT NULL,
... name TEXT NOT NULL)
... """)
>>> result = store.execute("""
... CREATE TABLE secret_agent (

(continues on next page)

2.3. Registering info classes 17

Storm Documentation

(continued from previous page)

... person_id INTEGER PRIMARY KEY,

... passcode TEXT NOT NULL)

... """)
>>> result = store.execute("""
... CREATE TABLE teacher (
... person_id INTEGER PRIMARY KEY,
... school TEXT NOT NULL)
... """)

2.4 Creating info classes

We can easily create person objects now.

>>> secret_agent = Person(store, u"Dick Tracy",
... SecretAgent, passcode=u"secret!")
>>> teacher = Person(store, u"Mrs. Cohen",
... Teacher, school=u"Cameron Elementary School")
>>> store.commit()

And we can easily find them again.

>>> del secret_agent
>>> del teacher
>>> store.rollback()

>>> [type(person.info)
... for person in store.find(Person).order_by(Person.name)]
[<class '...SecretAgent'>, <class '...Teacher'>]

2.5 Retrieving info classes

Now that we have our basic hierarchy in place we’re going to want to retrieve objects by info type. Let’s implement a
function to make finding Persons easier.

>>> def get_persons(store, info_classes=None):
... where = []
... if info_classes:
... info_types = [
... info_class.info_type for info_class in info_classes]
... where = [Person.info_type.is_in(info_types)]
... result = store.find(Person, *where)
... result.order_by(Person.name)
... return result

>>> secret_agent = get_persons(store, info_classes=[SecretAgent]).one()
>>> print(secret_agent.name)
Dick Tracy
>>> print(secret_agent.info.passcode)
secret!

>>> teacher = get_persons(store, info_classes=[Teacher]).one()

(continues on next page)

18 Chapter 2. Infoheritance

Storm Documentation

(continued from previous page)

>>> print(teacher.name)
Mrs. Cohen
>>> print(teacher.info.school)
Cameron Elementary School

Great, we can easily find different kinds of Persons.

2.6 In-memory info objects

This design also allows for in-memory info objects. Let’s add one to our hierarchy.

>>> class Ghost(PersonInfo):
...
... friendly = True

>>> register_person_info_type(3, Ghost)

We create and load in-memory objects the same way we do stored ones.

>>> ghost = Person(store, u"Casper", Ghost)
>>> store.commit()
>>> del ghost
>>> store.rollback()

>>> ghost = get_persons(store, info_classes=[Ghost]).one()
>>> print(ghost.name)
Casper
>>> print(ghost.info.friendly)
True

This pattern is very handy when using Storm with code that would naturally be implemented using inheritance.

2.6. In-memory info objects 19

Storm Documentation

20 Chapter 2. Infoheritance

CHAPTER 3

Zope integration

The storm.zope package contains the ZStorm utility which provides seamless integration between Storm and
Zope 3’s transaction system. Setting up ZStorm is quite easy. In most cases, you want to include storm/zope/
configure.zcml in your application, which you would normally do in ZCML as follows:

<include package="storm.zope" />

For the purposes of this doctest we’ll register ZStorm manually.

>>> from zope.component import provideUtility, getUtility
>>> import transaction
>>> from storm.zope.interfaces import IZStorm
>>> from storm.zope.zstorm import global_zstorm

>>> provideUtility(global_zstorm, IZStorm)
>>> zstorm = getUtility(IZStorm)
>>> zstorm
<storm.zope.zstorm.ZStorm object at ...>

Awesome, now that the utility is in place we can start to use it!

3.1 Getting stores

The ZStorm utility allows us work with named stores.

>>> zstorm.set_default_uri("test", "sqlite:")

Setting a default URI for stores isn’t strictly required. We could pass it as the second argument to zstorm.get.
Providing a default URI makes it possible to use zstorm.get more easily; this is especially handy when multiple
threads are used as we’ll see further on.

21

Storm Documentation

>>> store = zstorm.get("test")
>>> store
<storm.store.Store object at ...>

ZStorm has automatically created a store instance for us. If we ask for a store by name again, we should get the same
instance.

>>> same_store = zstorm.get("test")
>>> same_store is store
True

The stores provided by ZStorm are per-thread. If we ask for the named store in a different thread we should get a
different instance.

>>> import threading

>>> thread_store = []
>>> def get_thread_store():
... thread_store.append(zstorm.get("test"))

>>> thread = threading.Thread(target=get_thread_store)
>>> thread.start()
>>> thread.join()
>>> thread_store != [store]
True

Great! ZStorm abstracts away the process of creating and managing named stores. Let’s move on and use the stores
with Zope’s transaction system.

3.2 Committing transactions

The primary purpose of ZStorm is to integrate with Zope’s transaction system. Let’s create a schema so we can play
with some real data and see how it works.

>>> result = store.execute("""
... CREATE TABLE person (
... id INTEGER PRIMARY KEY,
... name TEXT)
... """)
>>> store.commit()

We’ll need a Person class to use with this database.

>>> from storm.locals import Storm, Int, Unicode

>>> class Person(Storm):
...
... __storm_table__ = "person"
...
... id = Int(primary=True)
... name = Unicode()
...
... def __init__(self, name):
... self.name = name

22 Chapter 3. Zope integration

Storm Documentation

Great! Let’s try it out.

>>> person = Person(u"John Doe")
>>> store.add(person)
<...Person object at ...>
>>> transaction.commit()

Notice that we’re not using store.commit directly; we’re using Zope’s transaction system. Let’s make sure it
worked.

>>> store.rollback()
>>> same_person = store.find(Person).one()
>>> same_person is person
True

Awesome!

3.3 Aborting transactions

Let’s make sure aborting transactions works, too.

>>> store.add(Person(u"Imposter!"))
<...Person object at ...>

At this point a store.find should return the new object.

>>> for name in sorted(person.name for person in store.find(Person)):
... print(name)
Imposter!
John Doe

All this means is that the data has been flushed to the database; it’s still not committed. If we abort the transaction the
new Person object should disappear.

>>> transaction.abort()
>>> for person in store.find(Person):
... print(person.name)
John Doe

Excellent! As you can see, ZStorm makes working with SQL databases and Zope 3 very natural.

3.4 ZCML

In the examples above we setup our stores manually. In many cases, setting up named stores via ZCML directives is
more desirable. Add a stanza similar to the following to your ZCML configuration to setup a named store.

<store name="test" uri="sqlite:" />

With that in place getUtility(IZStorm).get("test") will return the store named “test”.

3.3. Aborting transactions 23

Storm Documentation

3.5 Security Wrappers

Storm knows how to deal with “wrapped” objects – the identity of any Storm-managed object does not need to be the
same as the original object, by way of the “object info” system. As long as the object info can be retrieved from the
wrapped objects, things work fine.

To interoperate with the Zope security wrapper system, storm.zope tells Zope to exposes certain Storm-internal at-
tributes which appear on Storm-managed objects.

>>> from storm.info import get_obj_info, ObjectInfo
>>> from zope.security.checker import ProxyFactory
>>> from pprint import pprint

>>> person = store.find(Person).one()
>>> type(get_obj_info(person)) is ObjectInfo
True
>>> type(get_obj_info(ProxyFactory(person))) is ObjectInfo
True

Security-wrapped result sets can be used in the same way as unwrapped ones.

>>> from zope.component.testing import (
... setUp,
... tearDown,
...)
>>> from zope.configuration import xmlconfig
>>> from zope.security.protectclass import protectName
>>> import storm.zope

>>> setUp()
>>> _ = xmlconfig.file("configure.zcml", package=storm.zope)
>>> protectName(Person, "name", "zope.Public")

>>> another_person = Person(u"Jane Doe")
>>> store.add(another_person)
<...Person object at ...>
>>> result = ProxyFactory(store.find(Person).order_by(Person.name))
>>> for person in result:
... print(person.name)
Jane Doe
John Doe
>>> print(result[0].name)
Jane Doe
>>> for person in result[:1]:
... print(person.name)
Jane Doe
>>> another_person in result
True
>>> result.is_empty()
False
>>> result.any()
<...Person object at ...>
>>> print(result.first().name)
Jane Doe
>>> print(result.last().name)
John Doe

(continues on next page)

24 Chapter 3. Zope integration

Storm Documentation

(continued from previous page)

>>> print(result.count())
2

Check list() as well as ordinary iteration: on Python 3, this tries to call __len__ first (which doesn’t exist, but is
nevertheless allowed by the security wrapper).

>>> for person in list(result):
... print(person.name)
Jane Doe
John Doe

>>> result = ProxyFactory(
... store.find(Person, Person.name.startswith(u"John")))
>>> print(result.one().name)
John Doe

Security-wrapped reference sets work too.

>>> _ = store.execute("""
... CREATE TABLE team (
... id INTEGER PRIMARY KEY,
... name TEXT)
... """)
>>> _ = store.execute("""
... CREATE TABLE teammembership (
... id INTEGER PRIMARY KEY,
... person INTEGER NOT NULL REFERENCES person,
... team INTEGER NOT NULL REFERENCES team)
... """)
>>> store.commit()

>>> from storm.locals import Reference, ReferenceSet, Store

>>> class TeamMembership(Storm):
...
... __storm_table__ = "teammembership"
...
... id = Int(primary=True)
...
... person_id = Int(name="person", allow_none=False)
... person = Reference(person_id, "Person.id")
...
... team_id = Int(name="team", allow_none=False)
... team = Reference(team_id, "Team.id")
...
... def __init__(self, person, team):
... self.person = person
... self.team = team

>>> class Team(Storm):
...
... __storm_table__ = "team"
...
... id = Int(primary=True)
... name = Unicode()

(continues on next page)

3.5. Security Wrappers 25

Storm Documentation

(continued from previous page)

...

... def __init__(self, name):

... self.name = name

...

... members = ReferenceSet(

... "id", "TeamMembership.team_id",

... "TeamMembership.person_id", "Person.id",

... order_by="Person.name")

...

... def addMember(self, person):

... Store.of(self).add(TeamMembership(person, self))

>>> protectName(Team, "members", "zope.Public")
>>> protectName(Team, "addMember", "zope.Public")

>>> doe_family = Team(U"does")
>>> store.add(doe_family)
<...Team object at ...>
>>> doe_family = ProxyFactory(doe_family)
>>> doe_family.addMember(person)
>>> doe_family.addMember(another_person)

>>> for member in doe_family.members:
... print(member.name)
Jane Doe
John Doe
>>> for person in doe_family.members[:1]:
... print(person.name)
Jane Doe
>>> print(doe_family.members[0].name)
Jane Doe

>>> tearDown()

3.6 ResultSet interfaces

Query results provide IResultSet (or ISQLObjectResultSet if SQLObject’s compatibility layer is used).

>>> from storm.zope.interfaces import IResultSet, ISQLObjectResultSet
>>> from storm.store import EmptyResultSet, ResultSet
>>> from storm.sqlobject import SQLObjectResultSet
>>> IResultSet.implementedBy(ResultSet)
True
>>> IResultSet.implementedBy(EmptyResultSet)
True

>>> ISQLObjectResultSet.implementedBy(SQLObjectResultSet)
True

26 Chapter 3. Zope integration

CHAPTER 4

API

• Locals

• Store

• Defining tables and columns

– Base

– Properties

– References

– Variables

– SQLObject emulation

• Expressions

• Databases

– PostgreSQL

– SQLite

– Transaction identifiers

• Hooks and events

– Event

– Tracer

• Miscellaneous

– Cache

– Exceptions

– Info

27

Storm Documentation

– Testing

– Timezone

– URIs

– WSGI

4.1 Locals

The following names are re-exported from storm.locals for convenience:

• storm.base.Storm

• storm.database.create_database()

• storm.exceptions.StormError

• storm.expr.And

• storm.expr.Asc

• storm.expr.Count

• storm.expr.Delete

• storm.expr.Desc

• storm.expr.In

• storm.expr.Insert

• storm.expr.Join

• storm.expr.Like

• storm.expr.Max

• storm.expr.Min

• storm.expr.Not

• storm.expr.Or

• storm.expr.SQL

• storm.expr.Select

• storm.expr.Update

• storm.info.ClassAlias

• storm.properties.Bool

• storm.properties.Bytes

• storm.properties.Date

• storm.properties.DateTime

• storm.properties.Decimal

• storm.properties.Enum

• storm.properties.Float

• storm.properties.Int

28 Chapter 4. API

Storm Documentation

• storm.properties.JSON

• storm.properties.List

• storm.properties.Pickle

• storm.properties.Time

• storm.properties.TimeDelta

• storm.properties.UUID

• storm.properties.Unicode

• storm.references.Proxy

• storm.references.Reference

• storm.references.ReferenceSet

• storm.store.AutoReload

• storm.store.Store

• storm.xid.Xid

4.2 Store

The Store interface to a database.

This module contains the highest-level ORM interface in Storm.

class storm.store.Store(database, cache=None)
Bases: object

The Storm Store.

This is the highest-level interface to a database. It manages transactions with commit and rollback, caching,
high-level querying with find, and more.

Note that Store objects are not threadsafe. You should create one Store per thread in your application, passing
them the same backend Database object.

Parameters

• database – The storm.database.Database instance to use.

• cache – The cache to use. Defaults to a Cache instance.

get_database()
Return this Store’s Database object.

static of(obj)
Get the Store that the object is associated with.

If the given object has not yet been associated with a store, return None.

execute(statement, params=None, noresult=False)
Execute a basic query.

This is just like storm.database.Connection.execute, except that a flush is performed first.

close()
Close the connection.

4.2. Store 29

https://docs.python.org/3/library/functions.html#object

Storm Documentation

begin(xid)
Start a new two-phase transaction.

Parameters xid – A Xid instance holding identification data for the new transaction.

prepare()
Prepare a two-phase transaction for the final commit.

Note It must be called inside a two-phase transaction started with begin.

commit()
Commit all changes to the database.

This invalidates the cache, so all live objects will have data reloaded next time they are touched.

rollback()
Roll back all outstanding changes, reverting to database state.

get(cls, key)
Get object of type cls with the given primary key from the database.

If the object is alive the database won’t be touched.

Parameters

• cls – Class of the object to be retrieved.

• key – Primary key of object. May be a tuple for composed keys.

Returns The object found with the given primary key, or None if no object is found.

find(cls_spec, *args, **kwargs)
Perform a query.

Some examples:

store.find(Person, Person.name == u"Joe") --> all Persons named Joe
store.find(Person, name=u"Joe") --> same
store.find((Company, Person), Person.company_id == Company.id) -->

iterator of tuples of Company and Person instances which are
associated via the company_id -> Company relation.

Parameters

• cls_spec – The class or tuple of classes whose associated tables will be queried.

• args – Instances of Expr.

• kwargs – Mapping of simple column names to values or expressions to query for.

Returns A ResultSet of instances cls_spec. If cls_spec was a tuple, then an iterator
of tuples of such instances.

using(*tables)
Specify tables to use explicitly.

The find method generally does a good job at figuring out the tables to query by itself, but in some cases
it’s useful to specify them explicitly.

This is most often necessary when an explicit SQL join is required. An example follows:

join = LeftJoin(Person, Person.id == Company.person_id)
print(list(store.using(Company, join).find((Company, Person))))

30 Chapter 4. API

Storm Documentation

The previous code snippet will produce an SQL statement somewhat similar to this, depending on your
backend:

SELECT company.id, employee.company_id, employee.id
FROM company
LEFT JOIN employee ON employee.company_id = company.id;

Returns A TableSet, which has a find method similar to Store.find.

add(obj)
Add the given object to the store.

The object will be inserted into the database if it has not yet been added.

The added event will be fired on the object info’s event system.

remove(obj)
Remove the given object from the store.

The associated row will be deleted from the database.

reload(obj)
Reload the given object.

The object will immediately have all of its data reset from the database. Any pending changes will be
thrown away.

autoreload(obj=None)
Set an object or all objects to be reloaded automatically on access.

When a database-backed attribute of one of the objects is accessed, the object will be reloaded entirely
from the database.

Parameters obj – If passed, only mark the given object for autoreload. Otherwise, all cached
objects will be marked for autoreload.

invalidate(obj=None)
Set an object or all objects to be invalidated.

This prevents Storm from returning the cached object without first verifying that the object is still available
in the database.

This should almost never be called by application code; it is only necessary if it is possible that an object
has disappeared through some mechanism that Storm was unable to detect, like direct SQL statements
within the current transaction that bypassed the ORM layer. The Store automatically invalidates all cached
objects on transaction boundaries.

reset()
Reset this store, causing all future queries to return new objects.

Beware this method: it breaks the assumption that there will never be two objects in memory which
represent the same database object.

This is useful if you’ve got in-memory changes to an object that you want to “throw out”; next time they’re
fetched the objects will be recreated, so in-memory modifications will not be in effect for future queries.

add_flush_order(before, after)
Explicitly specify the order of flushing two objects.

When the next database flush occurs, the order of data modification statements will be ensured.

Parameters

4.2. Store 31

Storm Documentation

• before – The object to flush first.

• after – The object to flush after before.

remove_flush_order(before, after)
Cancel an explicit flush order specified with add_flush_order.

Parameters

• before – The before object previously specified in a call to add_flush_order.

• after – The after object previously specified in a call to add_flush_order.

flush()
Flush all dirty objects in cache to database.

This method will first call the __storm_pre_flush__ hook of all dirty objects. If more objects become dirty
as a result of executing code in the hooks, the hook is also called on them. The hook is only called once
for each object.

It will then flush each dirty object to the database, that is, execute the SQL code to insert/delete/update
them. After each object is flushed, the hook __storm_flushed__ is called on it, and if changes are made to
the object it will get back to the dirty list, and be flushed again.

Note that Storm will flush objects for you automatically, so you’ll only need to call this method explicitly
in very rare cases where normal flushing times are insufficient, such as when you want to make sure a
database trigger gets run at a particular time.

block_implicit_flushes()
Block implicit flushes from operations like execute().

unblock_implicit_flushes()
Unblock implicit flushes from operations like execute().

block_access()
Block access to the underlying database connection.

unblock_access()
Unblock access to the underlying database connection.

class storm.store.EmptyResultSet(ordered=False)
Bases: object

An object that looks like a ResultSet but represents no rows.

This is convenient for application developers who want to provide a method which is guaranteed to return a
ResultSet-like object but which, in certain cases, knows there is no point in querying the database. For
example:

def get_people(self, ids):
if not ids:

return EmptyResultSet()
return store.find(People, People.id.is_in(ids))

The methods on EmptyResultSet (one, config, union, etc) are meant to emulate a ResultSet which has
matched no rows.

get_select_expr(*columns)
Get a Select expression to retrieve only the specified columns.

Parameters columns – One or more storm.expr.Column objects whose values will be
fetched.

Raises FeatureError – Raised if no columns are specified.

32 Chapter 4. API

https://docs.python.org/3/library/functions.html#object

Storm Documentation

Returns A Select expression configured to use the query parameters specified for this result
set. The result of the select will always be an empty set of rows.

class storm.store.block_access(*args)
Bases: object

Context manager blocks database access by one or more Stores in the managed scope.

class storm.store.ResultSet(store, find_spec, where=Undef, tables=Undef, select=Undef)
Bases: object

The representation of the results of a query.

Note that having an instance of this class does not indicate that a database query has necessarily been made.
Database queries are put off until absolutely necessary.

Generally these should not be constructed directly, but instead retrieved from calls to Store.find.

copy()
Return a copy of this ResultSet object, with the same configuration.

config(distinct=None, offset=None, limit=None)
Configure this result object in-place. All parameters are optional.

Parameters

• distinct – If True, enables usage of the DISTINCT keyword in the query. If a tuple or
list of columns, inserts a DISTINCT ON (only supported by PostgreSQL).

• offset – Offset where results will start to be retrieved from the result set.

• limit – Limit the number of objects retrieved from the result set.

Returns self (not a copy).

is_empty()
Return True if this result set doesn’t contain any results.

any()
Return a single item from the result set.

Returns An arbitrary object or None if one isn’t available.

See one, first, and last.

first()
Return the first item from an ordered result set.

Raises UnorderedError – Raised if the result set isn’t ordered.

Returns The first object or None if one isn’t available.

See last, one, and any .

last()
Return the last item from an ordered result set.

Raises

• FeatureError – Raised if the result set has a LIMIT set.

• UnorderedError – Raised if the result set isn’t ordered.

Returns The last object or None if one isn’t available.

See first, one, and any .

4.2. Store 33

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Storm Documentation

one()
Return one item from a result set containing at most one item.

Raises NotOneError – Raised if the result set contains more than one item.

Returns The object or None if one isn’t available.

See first, last, and any .

order_by(*args)
Specify the ordering of the results.

The query will be modified appropriately with an ORDER BY clause.

Ascending and descending order can be specified by wrapping the columns in Asc and Desc.

Parameters args – One or more storm.expr.Column objects.

remove()
Remove all rows represented by this ResultSet from the database.

This is done efficiently with a DELETE statement, so objects are not actually loaded into Python.

group_by(*expr)
Group this ResultSet by the given expressions.

Parameters expr – The expressions used in the GROUP BY statement.

Returns self (not a copy).

having(*expr)
Filter result previously grouped by.

Parameters expr – Instances of Expr.

Returns self (not a copy).

count(expr=Undef, distinct=False)
Get the number of objects represented by this ResultSet.

max(expr)
Get the highest value from an expression.

min(expr)
Get the lowest value from an expression.

avg(expr)
Get the average value from an expression.

sum(expr)
Get the sum of all values in an expression.

get_select_expr(*columns)
Get a Select expression to retrieve only the specified columns.

Parameters columns – One or more storm.expr.Column objects whose values will be
fetched.

Raises FeatureError – Raised if no columns are specified or if this result is a set expression
such as a union.

Returns A Select expression configured to use the query parameters specified for this result
set, and also limited to only retrieving data for the specified columns.

34 Chapter 4. API

https://docs.python.org/3/library/constants.html#None

Storm Documentation

values(*columns)
Retrieve only the specified columns.

This does not load full objects from the database into Python.

Parameters columns – One or more storm.expr.Column objects whose values will be
fetched.

Raises FeatureError – Raised if no columns are specified or if this result is a set expression
such as a union.

Returns An iterator of tuples of the values for each column from each matching row in the
database.

set(*args, **kwargs)
Update objects in the result set with the given arguments.

This method will update all objects in the current result set to match expressions given as equalities or
keyword arguments. These objects may still be in the database (an UPDATE is issued) or may be cached.

For instance, result.set(Class.attr1 == 1, attr2=2) will set attr1 to 1 and attr2 to
2, on all matching objects.

cached()
Return matching objects from the cache for the current query.

find(*args, **kwargs)
Perform a query on objects within this result set.

This is analogous to Store.find, although it doesn’t take a cls_spec argument, instead using the
same tables as the existing result set, and restricts the results to those in this set.

Parameters

• args – Instances of Expr.

• kwargs – Mapping of simple column names to values or expressions to query for.

Returns A ResultSet of matching instances.

union(other, all=False)
Get the Union of this result set and another.

Parameters all – If True, include duplicates.

difference(other, all=False)
Get the difference, using Except, of this result set and another.

Parameters all – If True, include duplicates.

intersection(other, all=False)
Get the Intersection of this result set and another.

Parameters all – If True, include duplicates.

class storm.store.TableSet(store, tables)
Bases: object

The representation of a set of tables which can be queried at once.

This will typically be constructed by a call to Store.using.

find(cls_spec, *args, **kwargs)
Perform a query on the previously specified tables.

4.2. Store 35

https://docs.python.org/3/library/functions.html#object

Storm Documentation

This is identical to Store.find except that the tables are explicitly specified instead of relying on
inference.

Returns A ResultSet.

storm.store.AutoReload
A marker for reloading a single value.

Often this will be used to specify that a specific attribute should be loaded from the database on the next access,
like so:

storm_object.property = AutoReload

On the next access to storm_object.property, the value will be loaded from the database.

It is also often used as a default value for a property:

class Person(object):
__storm_table__ = "person"
id = Int(allow_none=False, default=AutoReload)

person = store.add(Person)
person.id # gets the attribute from the database.

4.3 Defining tables and columns

4.3.1 Base

class storm.base.Storm
Bases: object

An optional base class for objects stored in a Storm Store.

It causes your subclasses to be associated with a Storm PropertyRegistry. It is necessary to use this if you want
to specify References with strings.

4.3.2 Properties

class storm.properties.Property(name=None, primary=False, variable_class=<class
’storm.variables.Variable’>, variable_kwargs={})

Bases: object

A property representing a database column.

Properties can be set as attributes of classes that have a __storm_table__, and can then be used like ordinary
Python properties on instances of the class, corresponding to database columns.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• variable_class – The type of storm.variables.Variable corresponding to
this property.

• variable_kwargs – Dictionary of keyword arguments to be passed when constructing
the underlying variable.

36 Chapter 4. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Storm Documentation

class storm.properties.SimpleProperty(name=None, primary=False, **kwargs)
Bases: storm.properties.Property

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

class storm.properties.Bool(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Boolean property.

This accepts integer, float, or decimal.Decimal values, and stores them as booleans.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.BoolVariable

class storm.properties.Int(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Integer property.

4.3. Defining tables and columns 37

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

This accepts integer, float, or decimal.Decimal values, and stores them as integers.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.IntVariable

class storm.properties.Float(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Float property.

This accepts integer, float, or decimal.Decimal values, and stores them as floating-point values.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.FloatVariable

class storm.properties.Decimal(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

38 Chapter 4. API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

Decimal property.

This accepts integer or decimal.Decimal values, and stores them as text strings containing their decimal
representation.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.DecimalVariable

class storm.properties.Bytes(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Bytes property.

This accepts bytes, buffer (Python 2), or memoryview (Python 3) objects, and stores them as byte strings.

Deprecated aliases: Chars, RawStr.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

4.3. Defining tables and columns 39

https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

variable_class
alias of storm.variables.BytesVariable

storm.properties.RawStr
alias of storm.properties.Bytes

class storm.properties.Unicode(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Unicode property.

This accepts unicode (Python 2) or str (Python 3) objects, and stores them as text strings. Note that it does
not accept str objects on Python 2.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.UnicodeVariable

class storm.properties.DateTime(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Date and time property.

This accepts aware datetime.datetime objects and stores them as timestamps; it also accepts integer or
float objects, converting them using datetime.utcfromtimestamp. Note that it does not accept naive
datetime.datetime objects (those that do not have timezone information).

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

40 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.DateTimeVariable

class storm.properties.Date(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Date property.

This accepts datetime.date objects and stores them as datestamps; it also accepts datetime.datetime
objects, converting them using datetime.datetime.date.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.DateVariable

class storm.properties.Time(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Time property.

This accepts datetime.time objects and stores them as datestamps; it also accepts datetime.datetime
objects, converting them using datetime.datetime.time.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

4.3. Defining tables and columns 41

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.date
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.time
https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.TimeVariable

class storm.properties.TimeDelta(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Time delta property.

This accepts datetime.timedelta objects and stores them as time intervals.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.TimeDeltaVariable

class storm.properties.UUID(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

UUID property.

This accepts uuid.UUID objects and stores them as their text representation.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

42 Chapter 4. API

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/uuid.html#uuid.UUID

Storm Documentation

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.UUIDVariable

class storm.properties.Pickle(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Pickle property.

This accepts any object that can be serialized using pickle, and stores it as a byte string containing its pickled
representation.

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.PickleVariable

class storm.properties.JSON(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

JSON property.

This accepts any object that can be serialized using json, and stores it as a text string containing its JSON
representation.

4.3. Defining tables and columns 43

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/json.html#module-json

Storm Documentation

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.JSONVariable

class storm.properties.List(name=None, **kwargs)
Bases: storm.properties.SimpleProperty

List property.

This accepts iterable objects and stores them as a list where each element is an object of the given value type.

Parameters

• name – The name of this property.

• type – An instance of Property defining the type of each element of this list.

• default_factory – If specified, this will immediately be called to get the initial value.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of storm.variables.ListVariable

class storm.properties.Enum(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Enumeration property, allowing used values to differ from stored ones.

For instance:

44 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

class Class(Storm):
prop = Enum(map={"one": 1, "two": 2})

obj.prop = "one"
assert obj.prop == "one"

obj.prop = 1 # Raises error.

Another example:

class Class(Storm):
prop = Enum(map={"one": 1, "two": 2}, set_map={"um": 1})

obj.prop = "um"
assert obj.prop is "one"

obj.prop = "one" # Raises error.

variable_class
alias of storm.variables.EnumVariable

class storm.properties.PropertyRegistry
Bases: object

An object which remembers the Storm properties specified on classes, and is able to translate names to these
properties.

get(name, namespace=None)
Translate a property name path to the actual property.

This method accepts a property name like "id" or "Class.id" or "module.path.Class.id",
and tries to find a unique class/property with the given name.

When the namespace argument is given, the registry will be able to disambiguate names by choosing the
one that is closer to the given namespace. For instance get("Class.id", "a.b.c") will choose
a.Class.id rather than d.Class.id.

add_class(cls)
Register properties of cls so that they may be found by get().

add_property(cls, prop, attr_name)
Register property of cls so that it may be found by get().

clear()
Clean up all properties in the registry.

Used by tests.

4.3.3 References

class storm.references.Reference(local_key, remote_key, on_remote=False)
Bases: object

Descriptor for one-to-one relationships.

This is typically used when the class that it is being defined on has a foreign key onto another table:

4.3. Defining tables and columns 45

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Storm Documentation

class OtherGuy(object):
...
id = Int()

class MyGuy(object):
...
other_guy_id = Int()
other_guy = Reference(other_guy_id, OtherGuy.id)

but can also be used for backwards references, where OtherGuy’s table has a foreign key onto the class that you
want this property on:

class OtherGuy(object):
...
my_guy_id = Int() # in the database, a foreign key to my_guy.id

class MyGuy(object):
...
id = Int()
other_guy = Reference(id, OtherGuy.my_guy_id, on_remote=True)

In both cases, MyGuy().other_guy will resolve to the OtherGuy instance which is linked to it. In the
first case, it will be the OtherGuy instance whose id is equivalent to the MyGuy’s other_guy_id; in the
second, it’ll be the OtherGuy instance whose my_guy_id is equivalent to the MyGuy’s id.

Assigning to the property, for example with C{MyGuy().other_guy = OtherGuy()}, will link the objects and
update either MyGuy.other_guy_id or OtherGuy.my_guy_id accordingly.

String references may be used in place of storm.expr.Column objects throughout, and are resolved to
columns using PropertyResolver.

Create a Reference property.

Parameters

• local_key – The sibling column which is the foreign key onto remote_key. (unless
on_remote is passed; see below).

• remote_key – The column on the referred-to object which will have the same value as
that for local_key when resolved on an instance.

• on_remote – If specified, then the reference is backwards: It is the remote_key which
is a foreign key onto local_key.

class storm.references.ReferenceSet(local_key1, remote_key1, remote_key2=None, lo-
cal_key2=None, order_by=None)

Bases: object

Descriptor for many-to-one and many-to-many reference sets.

This is typically used when another class has a foreign key onto the class being defined, either directly (the
many-to-one case) or via an intermediate table (the many-to-many case). For instance:

class Person(Storm):
...
id = Int(primary=True)
email_addresses = ReferenceSet("id", "EmailAddress.owner_id")

class EmailAddress(Storm):
...

(continues on next page)

46 Chapter 4. API

https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#object

Storm Documentation

(continued from previous page)

owner_id = Int(name="owner", allow_none=False)
owner = Reference(owner_id, "Person.id")

class TeamMembership(Storm):
...
person_id = Int(name="person", allow_none=False)
person = Reference(person_id, "Person.id")
team_id = Int(name="team", allow_none=False)
team = Reference(team_id, "Team.id")

class Team(Storm):
...
id = Int(primary=True)
members = ReferenceSet(

"id", "TeamMembership.team_id",
"TeamMembership.person_id", "Person.id",
order_by="Person.name")

In this case, Person().email_addresses resolves to a BoundReferenceSet of all the email
addresses linked to that person (a many-to-one relationship), while Team().members resolves to a
BoundIndirectReferenceSet of all the members of that team (a many-to-many relationship). These
can be used in a somewhat similar way to ResultSet objects.

String references may be used in place of storm.expr.Column objects throughout, and are resolved to
columns using PropertyResolver.

Parameters

• local_key1 – The sibling column which has the same value as that for remote_key1
when resolved on an instance.

• remote_key1 – The column on the referring object (in the case of a many-to-one relation)
or on the intermediate table (in the case of a many-to-many relation) which is the foreign
key onto local_key1.

• remote_key2 – In the case of a many-to-many relation, the column on the intermediate
table which is the foreign key onto local_key2.

• local_key2 – In the case of a many-to-many relation, the column on the referred-to
object which has the same value as remote_key2 when resolved on an instance.

• order_by – If not None, order the resolved BoundReferenceSet or
BoundIndirectReferenceSet by these columns, as in storm.store.
ResultSet.order_by .

class storm.references.Proxy(reference, remote_prop)
Bases: storm.expr.ComparableExpr

Proxy exposes a referred object’s column as a local column.

For example:

class Foo(object):
bar_id = Int()
bar = Reference(bar_id, Bar.id)
bar_title = Proxy(bar, Bar.title)

For most uses, Foo.bar_title should behave as if it were a native property of Foo.

4.3. Defining tables and columns 47

https://docs.python.org/3/library/constants.html#None

Storm Documentation

class RemoteProp
Bases: object

This descriptor will resolve and set the _remote_prop attribute when it’s first used. It avoids having a test
at every single place where the attribute is touched.

4.3.4 Variables

class storm.variables.LazyValue
Bases: object

Marker to be used as a base class on lazily evaluated values.

storm.variables.VariableFactory
alias of functools.partial

class storm.variables.Variable(value=Undef, value_factory=Undef, from_db=False, al-
low_none=True, column=None, event=None, validator=None,
validator_object_factory=None, validator_attribute=None)

Bases: object

Basic representation of a database value in Python.

Variables

• column – The column this variable represents.

• event – The event system on which to broadcast events. If None, no events will be emitted.

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

get_lazy(default=None)
Get the current LazyValue without resolving its value.

Parameters default – If no LazyValue was previously specified, return this value. De-
faults to None.

48 Chapter 4. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Storm Documentation

get(default=None, to_db=False)
Get the value, resolving it from a LazyValue if necessary.

If the current value is an instance of LazyValue, then the resolve-lazy-value event will be emit-
ted, to give third parties the chance to resolve the lazy value to a real value.

Parameters

• default – Returned if no value has been set.

• to_db – A boolean flag indicating whether this value is destined for the database.

set(value, from_db=False)
Set a new value.

Generally this will be called when an attribute was set in Python, or data is being loaded from the database.

If the value is different from the previous value (or it is a LazyValue), then the changed event will be
emitted.

Parameters

• value – The value to set. If this is an instance of LazyValue, then later calls to get
will try to resolve the value.

• from_db – A boolean indicating whether this value has come from the database.

delete()
Delete the internal value.

If there was a value set, then emit the changed event.

is_defined()
Check whether there is currently a value.

Returns boolean indicating whether there is currently a value for this variable. Note that if a
LazyValue was previously set, this returns False; it only returns True if there is currently
a real value set.

has_changed()
Check whether the value has changed.

Returns boolean indicating whether the value has changed since the last call to checkpoint.

get_state()
Get the internal state of this object.

Returns A value which can later be passed to set_state.

set_state(state)
Set the internal state of this object.

Parameters state – A result from a previous call to get_state. The internal state of this
variable will be set to the state of the variable which get_state was called on.

checkpoint()
“Checkpoint” the internal state.

See has_changed.

copy()
Make a new copy of this Variable with the same internal state.

parse_get(value, to_db)
Convert the internal value to an external value.

4.3. Defining tables and columns 49

Storm Documentation

Get a representation of this value either for Python or for the database. This method is only intended to be
overridden in subclasses, not called from external code.

Parameters

• value – The value to be converted.

• to_db – Whether or not this value is destined for the database.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

class storm.variables.BoolVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, valida-
tor_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

50 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

• from_db – A boolean flag indicating whether this value is from the database.

class storm.variables.IntVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, valida-
tor_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

class storm.variables.FloatVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, valida-
tor_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

4.3. Defining tables and columns 51

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

class storm.variables.DecimalVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, val-
idator_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

static parse_set(value, from_db)
Convert an external value to an internal value.

52 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

static parse_get(value, to_db)
Convert the internal value to an external value.

Get a representation of this value either for Python or for the database. This method is only intended to be
overridden in subclasses, not called from external code.

Parameters

• value – The value to be converted.

• to_db – Whether or not this value is destined for the database.

class storm.variables.BytesVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, valida-
tor_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

4.3. Defining tables and columns 53

https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

• from_db – A boolean flag indicating whether this value is from the database.

storm.variables.RawStrVariable
alias of storm.variables.BytesVariable

class storm.variables.UnicodeVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, val-
idator_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

class storm.variables.DateTimeVariable(*args, **kwargs)
Bases: storm.variables.Variable

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

54 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

class storm.variables.DateVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, valida-
tor_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

class storm.variables.TimeVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, valida-
tor_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

4.3. Defining tables and columns 55

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

class storm.variables.TimeDeltaVariable(value=Undef, value_factory=Undef,
from_db=False, allow_none=True, col-
umn=None, event=None, validator=None,
validator_object_factory=None, valida-
tor_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

56 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

class storm.variables.UUIDVariable(value=Undef, value_factory=Undef, from_db=False,
allow_none=True, column=None, event=None, val-
idator=None, validator_object_factory=None, valida-
tor_attribute=None)

Bases: storm.variables.Variable

Parameters

• value – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• value_factory – If specified, this will immediately be called to get the initial value.

• from_db – A boolean value indicating where the initial value comes from, if value or
value_factory are specified.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• column (storm.expr.Column) – The column that this variable represents. It’s used
for reporting better error messages.

• event (storm.event.EventSystem) – The event system to broadcast messages
with. If not specified, then no events will be broadcast.

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

parse_get(value, to_db)
Convert the internal value to an external value.

Get a representation of this value either for Python or for the database. This method is only intended to be
overridden in subclasses, not called from external code.

Parameters

• value – The value to be converted.

4.3. Defining tables and columns 57

https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

• to_db – Whether or not this value is destined for the database.

class storm.variables.EnumVariable(get_map, set_map, *args, **kwargs)
Bases: storm.variables.Variable

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

parse_get(value, to_db)
Convert the internal value to an external value.

Get a representation of this value either for Python or for the database. This method is only intended to be
overridden in subclasses, not called from external code.

Parameters

• value – The value to be converted.

• to_db – Whether or not this value is destined for the database.

class storm.variables.PickleVariable(*args, **kwargs)
Bases: storm.variables.EncodedValueVariable

class storm.variables.JSONVariable(*args, **kwargs)
Bases: storm.variables.EncodedValueVariable

class storm.variables.ListVariable(item_factory, *args, **kwargs)
Bases: storm.variables.MutableValueVariable

parse_set(value, from_db)
Convert an external value to an internal value.

A value is being set either from Python code or from the database. Parse it into its internal representation.
This method is only intended to be overridden in subclasses, not called from external code.

Parameters

• value – The value, either from Python code setting an attribute or from a column in a
database.

• from_db – A boolean flag indicating whether this value is from the database.

parse_get(value, to_db)
Convert the internal value to an external value.

Get a representation of this value either for Python or for the database. This method is only intended to be
overridden in subclasses, not called from external code.

Parameters

• value – The value to be converted.

• to_db – Whether or not this value is destined for the database.

get_state()
Get the internal state of this object.

58 Chapter 4. API

Storm Documentation

Returns A value which can later be passed to set_state.

set_state(state)
Set the internal state of this object.

Parameters state – A result from a previous call to get_state. The internal state of this
variable will be set to the state of the variable which get_state was called on.

4.3.5 SQLObject emulation

A SQLObject emulation layer for Storm.

SQLObjectBase is the central point of compatibility.

storm.sqlobject.DESC
alias of storm.expr.Desc

storm.sqlobject.AND
alias of storm.expr.And

storm.sqlobject.OR
alias of storm.expr.Or

storm.sqlobject.NOT
alias of storm.expr.Not

storm.sqlobject.IN
alias of storm.expr.In

storm.sqlobject.LIKE
alias of storm.expr.Like

storm.sqlobject.SQLConstant
alias of storm.expr.SQL

storm.sqlobject.SQLObjectMoreThanOneResultError
alias of storm.exceptions.NotOneError

exception storm.sqlobject.SQLObjectNotFound
Bases: storm.exceptions.StormError

class storm.sqlobject.SQLObjectBase(*args, **kwargs)
Bases: storm.base.Storm

The root class of all SQLObject-emulating classes in your application.

The general strategy for using Storm’s SQLObject emulation layer is to create an application-specific subclass
of SQLObjectBase (probably named “SQLObject”) that provides an implementation of _get_store to return an
instance of storm.store.Store. It may even be implemented as returning a global Store instance. Then
all database classes should subclass that class.

class storm.sqlobject.SQLObjectResultSet(cls, clause=None, clauseTables=None, or-
derBy=None, limit=None, distinct=None, pre-
joins=None, prejoinClauseTables=None, selec-
tAlso=None, by={}, prepared_result_set=None,
slice=None)

Bases: object

SQLObject-equivalent of the ResultSet class in Storm.

4.3. Defining tables and columns 59

https://docs.python.org/3/library/functions.html#object

Storm Documentation

Storm handles joins in the Store interface, while SQLObject does that in the result one. To offer support for
prejoins, we can’t simply wrap our ResultSet instance, and instead have to postpone the actual find until the very
last moment.

is_empty()
Return True if this result set doesn’t contain any results.

class storm.sqlobject.StringCol(dbName=None, notNull=False, default=Undef, alter-
nateID=None, unique=<object object>, name=<object
object>, alternateMethodName=None, length=<object
object>, immutable=None, storm_validator=None)

Bases: storm.sqlobject.PropertyAdapter, storm.sqlobject.AutoUnicode

class storm.sqlobject.IntCol(dbName=None, notNull=False, default=Undef, alternateID=None,
unique=<object object>, name=<object object>, alternateMethod-
Name=None, length=<object object>, immutable=None,
storm_validator=None)

Bases: storm.sqlobject.PropertyAdapter, storm.properties.Int

class storm.sqlobject.BoolCol(dbName=None, notNull=False, default=Undef, alter-
nateID=None, unique=<object object>, name=<object ob-
ject>, alternateMethodName=None, length=<object object>,
immutable=None, storm_validator=None)

Bases: storm.sqlobject.PropertyAdapter, storm.properties.Bool

class storm.sqlobject.FloatCol(dbName=None, notNull=False, default=Undef, alter-
nateID=None, unique=<object object>, name=<object
object>, alternateMethodName=None, length=<object object>,
immutable=None, storm_validator=None)

Bases: storm.sqlobject.PropertyAdapter, storm.properties.Float

class storm.sqlobject.UtcDateTimeCol(dbName=None, notNull=False, default=Undef, alter-
nateID=None, unique=<object object>, name=<object
object>, alternateMethodName=None, length=<object
object>, immutable=None, storm_validator=None)

Bases: storm.sqlobject.PropertyAdapter, storm.properties.DateTime

class storm.sqlobject.DateCol(dbName=None, notNull=False, default=Undef, alter-
nateID=None, unique=<object object>, name=<object ob-
ject>, alternateMethodName=None, length=<object object>,
immutable=None, storm_validator=None)

Bases: storm.sqlobject.PropertyAdapter, storm.properties.Date

class storm.sqlobject.IntervalCol(dbName=None, notNull=False, default=Undef, alter-
nateID=None, unique=<object object>, name=<object
object>, alternateMethodName=None, length=<object
object>, immutable=None, storm_validator=None)

Bases: storm.sqlobject.PropertyAdapter, storm.properties.TimeDelta

class storm.sqlobject.SQLMultipleJoin(otherClass=None, joinColumn=None, intermedi-
ateTable=None, otherColumn=None, orderBy=None,
prejoins=None)

Bases: storm.references.ReferenceSet

storm.sqlobject.SQLRelatedJoin
alias of storm.sqlobject.SQLMultipleJoin

class storm.sqlobject.SingleJoin(otherClass, joinColumn, prejoins=<object object>)
Bases: storm.references.Reference

class storm.sqlobject.CONTAINSSTRING(expr, string)
Bases: storm.expr.Like

60 Chapter 4. API

https://docs.python.org/3/library/constants.html#True

Storm Documentation

4.4 Expressions

class storm.expr.Compile(parent=None)
Bases: object

Compiler based on the concept of generic functions.

when(*types)
Decorator to include a type handler in this compiler.

Use this as:

>>> @compile.when(TypeA, TypeB)
>>> def compile_type_a_or_b(compile, expr, state):
>>> ...
>>> return "THE COMPILED SQL STATEMENT"

add_reserved_words(words)
Include words to be considered reserved and thus escaped.

Reserved words are escaped during compilation when they’re seen in a SQLToken expression.

create_child()
Create a new instance of Compile which inherits from this one.

This is most commonly used to customize a compiler for database-specific compilation strategies.

class storm.expr.CompilePython(parent=None)
Bases: storm.expr.Compile

class storm.expr.State
Bases: object

All the data necessary during compilation of an expression.

Variables

• aliases – Dict of Column instances to Alias instances, specifying how columns should
be compiled as aliases in very specific situations. This is typically used to work around
strange deficiencies in various databases.

• auto_tables – The list of all implicitly-used tables. e.g., in store.find(Foo,
Foo.attr==Bar.id), the tables of Bar and Foo are implicitly used because columns in them
are referenced. This is used when building tables.

• join_tables – If not None, when Join expressions are compiled, tables seen will be
added to this set. This acts as a blacklist against auto_tables when compiling Joins, because
the generated statements should not refer to the table twice.

• context – an instance of Context, specifying the context of the expression currently
being compiled.

• precedence – Current precedence, automatically set and restored by the compiler. If an
inner precedence is lower than an outer precedence, parenthesis around the inner expression
are automatically emitted.

push(attr, new_value=Undef)
Set an attribute in a way that can later be reverted with pop.

pop()
Revert the topmost push.

4.4. Expressions 61

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Storm Documentation

class storm.expr.Context(name)
Bases: object

An object used to specify the nature of expected SQL expressions being compiled in a given context.

class storm.expr.Expr
Bases: storm.variables.LazyValue

class storm.expr.ComparableExpr
Bases: storm.expr.Expr, storm.expr.Comparable

class storm.expr.BinaryExpr(expr1, expr2)
Bases: storm.expr.ComparableExpr

class storm.expr.CompoundExpr(*exprs)
Bases: storm.expr.ComparableExpr

storm.expr.build_tables(compile, tables, default_tables, state)
Compile provided tables.

Tables will be built from either tables, state.auto_tables, or default_tables. If tables is not
Undef, it will be used. If tables is Undef and state.auto_tables is available, that’s used instead.
If neither tables nor state.auto_tables are available, default_tables is tried as a last resort. If
none of them are available, NoTableError is raised.

class storm.expr.Select(columns, where=Undef, tables=Undef, default_tables=Undef, or-
der_by=Undef, group_by=Undef, limit=Undef, offset=Undef, dis-
tinct=False, having=Undef)

Bases: storm.expr.Expr

class storm.expr.Insert(map, table=Undef, default_table=Undef, primary_columns=Undef, pri-
mary_variables=Undef, values=Undef)

Bases: storm.expr.Expr

Expression representing an insert statement.

Variables

• map – Dictionary mapping columns to values, or a sequence of columns for a bulk insert.

• table – Table where the row should be inserted.

• default_table – Table to use if no table is explicitly provided, and no tables may be
inferred from provided columns.

• primary_columns – Tuple of columns forming the primary key of the table where the
row will be inserted. This is a hint used by backends to process the insertion of rows.

• primary_variables – Tuple of variables with values for the primary key of the table
where the row will be inserted. This is a hint used by backends to process the insertion of
rows.

• values – Expression or sequence of tuples of values for bulk insertion.

class storm.expr.Update(map, where=Undef, table=Undef, default_table=Undef, pri-
mary_columns=Undef)

Bases: storm.expr.Expr

class storm.expr.Delete(where=Undef, table=Undef, default_table=Undef)
Bases: storm.expr.Expr

class storm.expr.Column(name=Undef, table=Undef, primary=False, variable_factory=None)
Bases: storm.expr.ComparableExpr

Representation of a column in some table.

62 Chapter 4. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#map

Storm Documentation

Variables

• name – Column name.

• table – Column table (maybe another expression).

• primary – Integer representing the primary key position of this column, or 0 if it’s not a
primary key. May be provided as a bool.

• variable_factory – Factory producing Variable instances typed according to this
column.

class storm.expr.Alias(expr, name=Undef)
Bases: storm.expr.ComparableExpr

A representation of “AS” alias clauses. e.g., SELECT foo AS bar.

Create alias of expr AS name.

If name is not given, then a name will automatically be generated.

class storm.expr.FromExpr
Bases: storm.expr.Expr

class storm.expr.Table(name)
Bases: storm.expr.FromExpr

class storm.expr.JoinExpr(arg1, arg2=Undef, on=Undef)
Bases: storm.expr.FromExpr

class storm.expr.Join(arg1, arg2=Undef, on=Undef)
Bases: storm.expr.JoinExpr

class storm.expr.LeftJoin(arg1, arg2=Undef, on=Undef)
Bases: storm.expr.JoinExpr

class storm.expr.RightJoin(arg1, arg2=Undef, on=Undef)
Bases: storm.expr.JoinExpr

class storm.expr.NaturalJoin(arg1, arg2=Undef, on=Undef)
Bases: storm.expr.JoinExpr

class storm.expr.NaturalLeftJoin(arg1, arg2=Undef, on=Undef)
Bases: storm.expr.JoinExpr

class storm.expr.NaturalRightJoin(arg1, arg2=Undef, on=Undef)
Bases: storm.expr.JoinExpr

class storm.expr.Distinct(expr)
Bases: storm.expr.Expr

Add the ‘DISTINCT’ prefix to an expression.

class storm.expr.BinaryOper(expr1, expr2)
Bases: storm.expr.BinaryExpr

class storm.expr.NonAssocBinaryOper(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.CompoundOper(*exprs)
Bases: storm.expr.CompoundExpr

class storm.expr.Eq(expr1, expr2)
Bases: storm.expr.BinaryOper

4.4. Expressions 63

Storm Documentation

class storm.expr.Ne(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.Gt(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.Ge(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.Lt(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.Le(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.RShift(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.LShift(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.Like(expr1, expr2, escape=Undef, case_sensitive=None)
Bases: storm.expr.BinaryOper

class storm.expr.In(expr1, expr2)
Bases: storm.expr.BinaryOper

class storm.expr.Add(*exprs)
Bases: storm.expr.CompoundOper

class storm.expr.Sub(expr1, expr2)
Bases: storm.expr.NonAssocBinaryOper

class storm.expr.Mul(*exprs)
Bases: storm.expr.CompoundOper

class storm.expr.Div(expr1, expr2)
Bases: storm.expr.NonAssocBinaryOper

class storm.expr.Mod(expr1, expr2)
Bases: storm.expr.NonAssocBinaryOper

class storm.expr.And(*exprs)
Bases: storm.expr.CompoundOper

class storm.expr.Or(*exprs)
Bases: storm.expr.CompoundOper

class storm.expr.SetExpr(*exprs, **kwargs)
Bases: storm.expr.Expr

class storm.expr.Union(*exprs, **kwargs)
Bases: storm.expr.SetExpr

class storm.expr.Except(*exprs, **kwargs)
Bases: storm.expr.SetExpr

class storm.expr.Intersect(*exprs, **kwargs)
Bases: storm.expr.SetExpr

class storm.expr.FuncExpr
Bases: storm.expr.ComparableExpr

64 Chapter 4. API

Storm Documentation

class storm.expr.Count(column=Undef, distinct=False)
Bases: storm.expr.FuncExpr

class storm.expr.Func(name, *args)
Bases: storm.expr.FuncExpr

name
str(object=”) -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must
expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns
the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding().
errors defaults to ‘strict’.

class storm.expr.NamedFunc(*args)
Bases: storm.expr.FuncExpr

class storm.expr.Max(*args)
Bases: storm.expr.NamedFunc

class storm.expr.Min(*args)
Bases: storm.expr.NamedFunc

class storm.expr.Avg(*args)
Bases: storm.expr.NamedFunc

class storm.expr.Sum(*args)
Bases: storm.expr.NamedFunc

class storm.expr.Lower(*args)
Bases: storm.expr.NamedFunc

class storm.expr.Upper(*args)
Bases: storm.expr.NamedFunc

class storm.expr.Coalesce(*args)
Bases: storm.expr.NamedFunc

class storm.expr.Row(*args)
Bases: storm.expr.NamedFunc

class storm.expr.Cast(column, type)
Bases: storm.expr.FuncExpr

A representation of CAST clauses. e.g., CAST(bar AS TEXT).

Create a cast of column as type.

storm.expr.compile_cast(compile, cast, state)
Compile Cast expressions.

class storm.expr.PrefixExpr(expr)
Bases: storm.expr.Expr

class storm.expr.SuffixExpr(expr)
Bases: storm.expr.Expr

class storm.expr.Not(expr)
Bases: storm.expr.PrefixExpr

class storm.expr.Exists(expr)
Bases: storm.expr.PrefixExpr

4.4. Expressions 65

https://docs.python.org/3/library/functions.html#type

Storm Documentation

class storm.expr.Neg(expr)
Bases: storm.expr.PrefixExpr

class storm.expr.Asc(expr)
Bases: storm.expr.SuffixExpr

class storm.expr.Desc(expr)
Bases: storm.expr.SuffixExpr

class storm.expr.SQLRaw
Bases: str

Subtype to mark a string as something that shouldn’t be compiled.

This is handled internally by the compiler.

class storm.expr.SQLToken
Bases: str

Marker for strings that should be considered as a single SQL token.

These strings will be quoted, when needed.

storm.expr.is_safe_token()
Matches zero or more characters at the beginning of the string.

class storm.expr.SQL(expr, params=Undef, tables=Undef)
Bases: storm.expr.ComparableExpr

class storm.expr.Sequence(name)
Bases: storm.expr.Expr

Expression representing auto-incrementing support from the database.

This should be translated into the next value of the named auto-incrementing sequence. There’s no standard way
to compile a sequence, since it’s very database-dependent.

This may be used as follows:

class Class(object):
(...)
id = Int(default=Sequence("my_sequence_name"))

class storm.expr.AutoTables(expr, tables, replace=False)
Bases: storm.expr.Expr

This class will inject one or more entries in state.auto_tables.

If the constructor is passed replace=True, it will also discard any auto_table entries injected by compiling the
given expression.

4.5 Databases

Basic database interfacing mechanisms for Storm.

This is the common code for database support; specific databases are supported in modules in storm.databases.

class storm.database.Result(connection, raw_cursor)
Bases: object

A representation of the results from a single SQL statement.

66 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Storm Documentation

close()
Close the underlying raw cursor, if it hasn’t already been closed.

get_one()
Fetch one result from the cursor.

The result will be converted to an appropriate format via from_database.

Raises DisconnectionError – Raised when the connection is lost. Reconnection happens
automatically on rollback.

Returns A converted row or None, if no data is left.

get_all()
Fetch all results from the cursor.

The results will be converted to an appropriate format via from_database.

Raises DisconnectionError – Raised when the connection is lost. Reconnection happens
automatically on rollback.

rowcount
See PEP 249 for further details on rowcount.

Returns the number of affected rows, or None if the database backend does not provide this
information. Return value is undefined if all results have not yet been retrieved.

get_insert_identity(primary_columns, primary_variables)
Get a query which will return the row that was just inserted.

This must be overridden in database-specific subclasses.

Return type storm.expr.Expr

static set_variable(variable, value)
Set the given variable’s value from the database.

static from_database(row)
Convert a row fetched from the database to an agnostic format.

This method is intended to be overridden in subclasses, but not called externally.

If there are any peculiarities in the datatypes returned from a database backend, this method should be
overridden in the backend subclass to convert them.

class storm.database.Connection(database, event=None)
Bases: object

A connection to a database.

Variables

• result_factory – A callable which takes this Connection and the backend cursor
and returns an instance of Result.

• param_mark – The dbapi paramstyle that the database backend expects.

• compile – The compiler to use for connections of this type.

result_factory
alias of Result

block_access()
Block access to the connection.

4.5. Databases 67

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#compile

Storm Documentation

Attempts to execute statements or commit a transaction will result in a ConnectionBlockedError
exception. Rollbacks are permitted as that operation is often used in case of failures.

unblock_access()
Unblock access to the connection.

execute(statement, params=None, noresult=False)
Execute a statement with the given parameters.

Parameters

• statement (Expr or str) – The statement to execute. It will be compiled if necessary.

• noresult – If True, no result will be returned.

Raises

• ConnectionBlockedError – Raised if access to the connection has been blocked
with block_access.

• DisconnectionError – Raised when the connection is lost. Reconnection happens
automatically on rollback.

Returns The result of self.result_factory, or None if noresult is True.

close()
Close the connection if it is not already closed.

begin(xid)
Begin a two-phase transaction.

prepare()
Run the prepare phase of a two-phase transaction.

commit(xid=None)
Commit the connection.

Parameters xid – Optionally the Xid of a previously prepared transaction to commit. This
form should be called outside of a transaction, and is intended for use in recovery.

Raises

• ConnectionBlockedError – Raised if access to the connection has been blocked
with block_access.

• DisconnectionError – Raised when the connection is lost. Reconnection happens
automatically on rollback.

recover()
Return a list of Xids representing pending transactions.

rollback(xid=None)
Rollback the connection.

Parameters xid – Optionally the Xid of a previously prepared transaction to rollback. This
form should be called outside of a transaction, and is intended for use in recovery.

static to_database(params)
Convert some parameters into values acceptable to a database backend.

It is acceptable to override this method in subclasses, but it is not intended to be used externally.

This delegates conversion to any Variables in the parameter list, and passes through all other values
untouched.

68 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#str

Storm Documentation

build_raw_cursor()
Get a new dbapi cursor object.

It is acceptable to override this method in subclasses, but it is not intended to be called externally.

raw_execute(statement, params=None)
Execute a raw statement with the given parameters.

It’s acceptable to override this method in subclasses, but it is not intended to be called externally.

If the global DEBUG is True, the statement will be printed to standard out.

Returns The dbapi cursor object, as fetched from build_raw_cursor.

is_disconnection_error(exc, extra_disconnection_errors=())
Check whether an exception represents a database disconnection.

This should be overridden by backends to detect whichever exception values are used to represent this
condition.

preset_primary_key(primary_columns, primary_variables)
Process primary variables before an insert happens.

This method may be overwritten by backends to implement custom changes in primary variables before
an insert happens.

class storm.database.Database(uri=None)
Bases: object

A database that can be connected to.

This should be subclassed for individual database backends.

Variables connection_factory – A callable which will take this database and should return
an instance of Connection.

connection_factory
alias of Connection

get_uri()
Return the URI object this database was created with.

connect(event=None)
Create a connection to the database.

It calls self.connection_factory to allow for ease of customization.

Parameters event – The event system to broadcast messages with. If not specified, then no
events will be broadcast.

Returns An instance of Connection.

raw_connect()
Create a raw database connection.

This is used by Connection objects to connect to the database. It should be overriden in subclasses to
do any database-specific connection setup.

Returns A DB-API connection object.

storm.database.register_scheme(scheme, factory)
Register a handler for a new database URI scheme.

Parameters

• scheme – the database URI scheme

4.5. Databases 69

https://docs.python.org/3/library/functions.html#object

Storm Documentation

• factory – a function taking a URI instance and returning a database.

storm.database.create_database(uri)
Create a database instance.

Parameters uri – An URI instance, or a string describing the URI. Some examples:

“sqlite:” An in memory sqlite database.

“sqlite:example.db” A SQLite database called example.db

“postgres:test” The database ‘test’ from the local postgres server.

“postgres://user:password@host/test” The database test on machine host with supplied user credentials, us-
ing postgres.

“anything:. . . ” Where ‘anything’ has previously been registered with register_scheme.

4.5.1 PostgreSQL

class storm.databases.postgres.Returning(expr, columns=None)
Bases: storm.expr.Expr

Appends the “RETURNING <columns>” suffix to an INSERT or UPDATE.

Parameters

• expr – an Insert or Update expression.

• columns – The columns to return, if None then expr.primary_columns will be
used.

This is only supported in PostgreSQL 8.2+.

class storm.databases.postgres.Case(cases, expression=Undef, default=Undef)
Bases: storm.expr.Expr

A CASE statement.

Params cases a list of tuples of (condition, result) or (value, result), if an expression is passed too.

Parameters

• expression – the expression to compare (if the simple form is used).

• default – an optional default condition if no other case matches.

class storm.databases.postgres.currval(column)
Bases: storm.expr.FuncExpr

storm.databases.postgres.compile_currval(compile, expr, state)
Compile a currval.

This is a bit involved because we have to get escaping right. Here are a few cases to keep in mind:

currval('thetable_thecolumn_seq')
currval('theschema.thetable_thecolumn_seq')
currval('"the schema".thetable_thecolumn_seq')
currval('theschema."the table_thecolumn_seq"')
currval('theschema."thetable_the column_seq"')
currval('"thetable_the column_seq"')
currval('"the schema"."the table_the column_seq"')

70 Chapter 4. API

https://docs.python.org/3/library/constants.html#None

Storm Documentation

class storm.databases.postgres.PostgresResult(connection, raw_cursor)
Bases: storm.database.Result

get_insert_identity(primary_key, primary_variables)
Get a query which will return the row that was just inserted.

This must be overridden in database-specific subclasses.

Return type storm.expr.Expr

class storm.databases.postgres.PostgresConnection(database, event=None)
Bases: storm.database.Connection

result_factory
alias of PostgresResult

execute(statement, params=None, noresult=False)
Execute a statement with the given parameters.

This extends the Connection.execute method to add support for automatic retrieval of inserted pri-
mary keys to link in-memory objects with their specific rows.

to_database(params)
Like Connection.to_database, but this converts datetime types to strings, and bytes to
psycopg2.Binary instances.

is_disconnection_error(exc, extra_disconnection_errors=())
Check whether an exception represents a database disconnection.

This should be overridden by backends to detect whichever exception values are used to represent this
condition.

class storm.databases.postgres.Postgres(uri)
Bases: storm.database.Database

connection_factory
alias of PostgresConnection

raw_connect()
Create a raw database connection.

This is used by Connection objects to connect to the database. It should be overriden in subclasses to
do any database-specific connection setup.

Returns A DB-API connection object.

storm.databases.postgres.create_from_uri
alias of storm.databases.postgres.Postgres

storm.databases.postgres.make_dsn(uri)
Convert a URI object to a PostgreSQL DSN string.

class storm.databases.postgres.PostgresTimeoutTracer(granularity=5)
Bases: storm.tracer.TimeoutTracer

set_statement_timeout(raw_cursor, remaining_time)
Perform the timeout setup in the raw cursor.

The database should raise an error if the next statement takes more than the number of seconds provided
in remaining_time.

Must be specialized in the backend.

4.5. Databases 71

Storm Documentation

connection_raw_execute_error(connection, raw_cursor, statement, params, error)
Raise TimeoutError if the given error was a timeout issue.

Must be specialized in the backend.

class storm.databases.postgres.JSONElement(expr1, expr2)
Bases: storm.expr.BinaryOper

Return an element of a JSON value (by index or field name).

class storm.databases.postgres.JSONTextElement(expr1, expr2)
Bases: storm.expr.BinaryOper

Return an element of a JSON value (by index or field name) as text.

class storm.databases.postgres.JSONVariable(*args, **kwargs)
Bases: storm.variables.JSONVariable

class storm.databases.postgres.JSON(name=None, primary=False, **kwargs)
Bases: storm.properties.SimpleProperty

Parameters

• name – The name of this property.

• primary – A boolean indicating whether this property is a primary key.

• default – The initial value of this variable. The default behavior is for the value to stay
undefined until it is set with set.

• default_factory – If specified, this will immediately be called to get the initial value.

• allow_none – A boolean indicating whether None should be allowed to be set as the
value of this variable.

• validator – Validation function called whenever trying to set the variable to a non-
db value. The function should look like validator(object, attr, value), where the first and
second arguments are the result of validator_object_factory() (or None, if this parameter
isn’t provided) and the value of validator_attribute, respectively. When called, the function
should raise an error if the value is unacceptable, or return the value to be used in place of
the original value otherwise.

• kwargs – Other keyword arguments passed through when constructing the underlying vari-
able.

variable_class
alias of JSONVariable

4.5.2 SQLite

class storm.databases.sqlite.SQLiteResult(connection, raw_cursor)
Bases: storm.database.Result

get_insert_identity(primary_key, primary_variables)
Get a query which will return the row that was just inserted.

This must be overridden in database-specific subclasses.

Return type storm.expr.Expr

static set_variable(variable, value)
Set the given variable’s value from the database.

72 Chapter 4. API

https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/stdtypes.html#set

Storm Documentation

static from_database(row)
Convert SQLite-specific datatypes to “normal” Python types.

On Python 2, if there are any buffer instances in the row, convert them to bytes. On Python 3, BLOB
types are converted to bytes, which is already what we want.

class storm.databases.sqlite.SQLiteConnection(database, event=None)
Bases: storm.database.Connection

result_factory
alias of SQLiteResult

static to_database(params)
Like Connection.to_database, but this also converts instances of datetime types to strings, and
(on Python 2) bytes instances to buffer instances.

commit()
Commit the connection.

Parameters xid – Optionally the Xid of a previously prepared transaction to commit. This
form should be called outside of a transaction, and is intended for use in recovery.

Raises

• ConnectionBlockedError – Raised if access to the connection has been blocked
with block_access.

• DisconnectionError – Raised when the connection is lost. Reconnection happens
automatically on rollback.

rollback()
Rollback the connection.

Parameters xid – Optionally the Xid of a previously prepared transaction to rollback. This
form should be called outside of a transaction, and is intended for use in recovery.

raw_execute(statement, params=None, _end=False)
Execute a raw statement with the given parameters.

This method will automatically retry on locked database errors. This should be done by pysqlite, but it
doesn’t work with versions < 2.3.4, so we make sure the timeout is respected here.

class storm.databases.sqlite.SQLite(uri)
Bases: storm.database.Database

connection_factory
alias of SQLiteConnection

raw_connect()
Create a raw database connection.

This is used by Connection objects to connect to the database. It should be overriden in subclasses to
do any database-specific connection setup.

Returns A DB-API connection object.

storm.databases.sqlite.create_from_uri
alias of storm.databases.sqlite.SQLite

4.5.3 Transaction identifiers

class storm.xid.Xid(format_id, global_transaction_id, branch_qualifier)
Bases: object

4.5. Databases 73

https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/functions.html#object

Storm Documentation

Represent a transaction identifier compliant with the XA specification.

4.6 Hooks and events

4.6.1 Event

class storm.event.EventSystem(owner)
Bases: object

A system for managing hooks that are called when events are emitted.

Hooks are callables that take the event system owner as their first argument, followed by the arguments passed
when emitting the event, followed by any additional data arguments given when registering the hook.

Hooks registered for a given event name are stored without ordering: no particular call order may be assumed
when an event is emitted.

Parameters owner – The object that owns this event system. It is passed as the first argument to
each hook function.

hook(name, callback, *data)
Register a hook.

Parameters

• name – The name of the event for which this hook should be called.

• callback – A callable which should be called when the event is emitted.

• data – Additional arguments to pass to the callable, after the owner and any arguments
passed when emitting the event.

unhook(name, callback, *data)
Unregister a hook.

This ignores attempts to unregister hooks that were not already registered.

Parameters

• name – The name of the event for which this hook should no longer be called.

• callback – The callable to unregister.

• data – Additional arguments that were passed when registering the callable.

emit(name, *args)
Emit an event, calling any registered hooks.

Parameters

• name – The name of the event.

• args – Additional arguments to pass to hooks.

4.6.2 Tracer

class storm.tracer.TimeoutTracer(granularity=5)
Bases: object

Provide a timeout facility for connections to prevent rogue operations.

74 Chapter 4. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Storm Documentation

This tracer must be subclassed by backend-specific implementations that override
connection_raw_execute_error, set_statement_timeout and get_remaining_time
methods.

connection_raw_execute(connection, raw_cursor, statement, params)
Check timeout conditions before a statement is executed.

Parameters

• connection – The Connection to the database.

• raw_cursor – A cursor object, specific to the backend being used.

• statement – The SQL statement to execute.

• params – The parameters to use with statement.

Raises TimeoutError – Raised if there isn’t enough time left to execute statement.

connection_raw_execute_error(connection, raw_cursor, statement, params, error)
Raise TimeoutError if the given error was a timeout issue.

Must be specialized in the backend.

connection_commit(connection, xid=None)
Reset Connection._timeout_tracer_remaining_time.

Parameters

• connection – The Connection to the database.

• xid – Optionally the Xid of a previously prepared transaction to commit.

connection_rollback(connection, xid=None)
Reset Connection._timeout_tracer_remaining_time.

Parameters

• connection – The Connection to the database.

• xid – Optionally the Xid of a previously prepared transaction to rollback.

set_statement_timeout(raw_cursor, remaining_time)
Perform the timeout setup in the raw cursor.

The database should raise an error if the next statement takes more than the number of seconds provided
in remaining_time.

Must be specialized in the backend.

get_remaining_time()
Tells how much time the current context (HTTP request, etc) has.

Must be specialized with application logic.

Returns Number of seconds allowed for the next statement.

class storm.tracer.BaseStatementTracer
Bases: object

Storm tracer base class that does query interpolation.

class storm.tracer.TimelineTracer(timeline_factory, prefix=’SQL-’)
Bases: storm.tracer.BaseStatementTracer

Storm tracer class to insert executed statements into a Timeline.

For more information on timelines see the module at https://pypi.org/project/timeline/.

4.6. Hooks and events 75

https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/functions.html#object
https://pypi.org/project/timeline/

Storm Documentation

The timeline to use is obtained by calling the timeline_factory supplied to the constructor. This simple function
takes no parameters and returns a timeline to use. If it returns None, the tracer is bypassed.

Create a TimelineTracer.

Parameters

• timeline_factory – A factory function to produce the timeline to record a query
against.

• prefix – A prefix to give the connection name when starting an action. Connection names
are found by trying a getattr for ‘name’ on the connection object. If no name has been
assigned, ‘<unknown>’ is used instead.

4.7 Miscellaneous

4.7.1 Cache

class storm.cache.Cache(size=1000)
Bases: object

Prevents recently used objects from being deallocated.

This prevents recently used objects from being deallocated by Python even if the user isn’t holding any strong
references to it. It does that by holding strong references to the objects referenced by the last N obj_infos
added to it (where N is the cache size).

clear()
Clear the entire cache at once.

add(obj_info)
Add obj_info as the most recent entry in the cache.

If the obj_info is already in the cache, it remains in the cache and has its order changed to become the
most recent entry (IOW, will be the last to leave).

remove(obj_info)
Remove obj_info from the cache, if present.

Returns True if obj_info was cached, False otherwise.

set_size(size)
Set the maximum number of objects that may be held in this cache.

If the size is reduced, older obj_infos may be dropped from the cache to respect the new size.

get_cached()
Return an ordered list of the currently cached obj_infos.

The most recently added objects come first in the list.

class storm.cache.GenerationalCache(size=1000)
Bases: object

Generational replacement for Storm’s LRU cache.

This cache approximates LRU without keeping exact track. Instead, it keeps a primary dict of “recently used”
objects plus a similar, secondary dict of objects used in a previous timeframe.

When the “most recently used” dict reaches its size limit, it is demoted to secondary dict and a fresh primary
dict is set up. The previous secondary dict is evicted in its entirety.

76 Chapter 4. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Storm Documentation

Use this to replace the LRU cache for sizes where LRU tracking overhead becomes too large (e.g. 100,000
objects) or the StupidCache when it eats up too much memory.

Create a generational cache with the given size limit.

The size limit applies not to the overall cache, but to the primary one only. When this reaches the size limit,
the real number of cached objects will be somewhere between size and 2*size depending on how much overlap
there is between the primary and secondary caches.

clear()
See Cache.clear.

Clears both the primary and the secondary caches.

add(obj_info)
See Cache.add.

remove(obj_info)
See Cache.remove.

set_size(size)
See Cache.set_size.

After calling this, the cache may still contain more than size objects, but no more than twice that number.

get_cached()
See Cache.get_cached.

The result is a loosely-ordered list. Any object in the primary generation comes before any object that is
only in the secondary generation, but objects within a generation are not ordered and there is no indication
of the boundary between the two.

Objects that are in both the primary and the secondary generation are listed only as part of the primary
generation.

4.7.2 Exceptions

exception storm.exceptions.StormError
Bases: Exception

exception storm.exceptions.CompileError
Bases: storm.exceptions.StormError

exception storm.exceptions.NoTableError
Bases: storm.exceptions.CompileError

exception storm.exceptions.ExprError
Bases: storm.exceptions.StormError

exception storm.exceptions.NoneError
Bases: storm.exceptions.StormError

exception storm.exceptions.PropertyPathError
Bases: storm.exceptions.StormError

exception storm.exceptions.ClassInfoError
Bases: storm.exceptions.StormError

exception storm.exceptions.URIError
Bases: storm.exceptions.StormError

exception storm.exceptions.ClosedError
Bases: storm.exceptions.StormError

4.7. Miscellaneous 77

https://docs.python.org/3/library/exceptions.html#Exception

Storm Documentation

exception storm.exceptions.FeatureError
Bases: storm.exceptions.StormError

exception storm.exceptions.DatabaseModuleError
Bases: storm.exceptions.StormError

exception storm.exceptions.StoreError
Bases: storm.exceptions.StormError

exception storm.exceptions.NoStoreError
Bases: storm.exceptions.StormError

exception storm.exceptions.WrongStoreError
Bases: storm.exceptions.StoreError

exception storm.exceptions.NotFlushedError
Bases: storm.exceptions.StoreError

exception storm.exceptions.OrderLoopError
Bases: storm.exceptions.StoreError

exception storm.exceptions.NotOneError
Bases: storm.exceptions.StoreError

exception storm.exceptions.UnorderedError
Bases: storm.exceptions.StoreError

exception storm.exceptions.LostObjectError
Bases: storm.exceptions.StoreError

exception storm.exceptions.Error
Bases: storm.exceptions.StormError

exception storm.exceptions.Warning
Bases: storm.exceptions.StormError

exception storm.exceptions.InterfaceError
Bases: storm.exceptions.Error

exception storm.exceptions.DatabaseError
Bases: storm.exceptions.Error

exception storm.exceptions.InternalError
Bases: storm.exceptions.DatabaseError

exception storm.exceptions.OperationalError
Bases: storm.exceptions.DatabaseError

exception storm.exceptions.ProgrammingError
Bases: storm.exceptions.DatabaseError

exception storm.exceptions.IntegrityError
Bases: storm.exceptions.DatabaseError

exception storm.exceptions.DataError
Bases: storm.exceptions.DatabaseError

exception storm.exceptions.NotSupportedError
Bases: storm.exceptions.DatabaseError

exception storm.exceptions.DisconnectionError
Bases: storm.exceptions.OperationalError

78 Chapter 4. API

Storm Documentation

exception storm.exceptions.TimeoutError(statement, params, message=None)
Bases: storm.exceptions.StormError

Raised by timeout tracers when remining time is over.

exception storm.exceptions.ConnectionBlockedError
Bases: storm.exceptions.StormError

Raised when an attempt is made to use a blocked connection.

storm.exceptions.wrap_exceptions(database)
Context manager that re-raises DB exceptions as StormError instances.

4.7.3 Info

class storm.info.ClassInfo(cls)
Bases: dict

Persistent Storm-related information of a class.

The following attributes are defined:

Variables

• table – Expression from where columns will be looked up.

• cls – Class which should be used to build objects.

• columns – Tuple of column properties found in the class.

• primary_key – Tuple of column properties used to form the primary key

• primary_key_pos – Position of primary_key items in the columns tuple.

class storm.info.ObjectInfo(obj)
Bases: dict

class storm.info.ClassAlias
Bases: object

Create a named alias for a Storm class for use in queries.

This is useful basically when the SQL ‘AS’ feature is desired in code using Storm queries.

ClassAliases which are explicitly named (i.e., when ‘name’ is passed) are cached for as long as the class exists,
such that the alias returned from ClassAlias(Foo, 'foo_alias') will be the same object no matter
how many times it’s called.

Parameters

• cls – The class to create the alias of.

• name – If provided, specify the name of the alias to create.

4.7.4 Testing

class storm.testing.CaptureTracer
Bases: storm.tracer.BaseStatementTracer, fixtures.fixture.Fixture

Trace SQL statements appending them to a list.

Example:

4.7. Miscellaneous 79

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list

Storm Documentation

with CaptureTracer() as tracer:
Run queries

print(tracer.queries) # Print the queries that have been run

Note This class requires the fixtures package to be available.

4.7.5 Timezone

This module offers extensions to the standard python 2.3+ datetime module.

class storm.tz.tzutc
Bases: datetime.tzinfo

utcoffset(dt)
datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

dst(dt)
datetime -> DST offset as timedelta positive east of UTC.

tzname(dt)
datetime -> string name of time zone.

class storm.tz.tzoffset(name, offset)
Bases: datetime.tzinfo

utcoffset(dt)
datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

dst(dt)
datetime -> DST offset as timedelta positive east of UTC.

tzname(dt)
datetime -> string name of time zone.

class storm.tz.tzlocal
Bases: datetime.tzinfo

utcoffset(dt)
datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

dst(dt)
datetime -> DST offset as timedelta positive east of UTC.

tzname(dt)
datetime -> string name of time zone.

class storm.tz.tzfile(fileobj)
Bases: datetime.tzinfo

utcoffset(dt)
datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

dst(dt)
datetime -> DST offset as timedelta positive east of UTC.

tzname(dt)
datetime -> string name of time zone.

class storm.tz.tzrange(stdabbr, stdoffset=None, dstabbr=None, dstoffset=None, start=None,
end=None)

Bases: datetime.tzinfo

80 Chapter 4. API

https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.tzinfo

Storm Documentation

utcoffset(dt)
datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

dst(dt)
datetime -> DST offset as timedelta positive east of UTC.

tzname(dt)
datetime -> string name of time zone.

class storm.tz.tzstr(s)
Bases: storm.tz.tzrange

4.7.6 URIs

class storm.uri.URI(uri_str)
Bases: object

A representation of a Uniform Resource Identifier (URI).

This is intended exclusively for database connection URIs.

Variables

• username – The username part of the URI, or None.

• password – The password part of the URI, or None.

• host – The host part of the URI, or None.

• port – The port part of the URI, or None.

• database – The part of the URI representing the database name, or None.

4.7.7 WSGI

Glue to wire a storm timeline tracer up to a WSGI app.

storm.wsgi.make_app(app)
Capture the per-request timeline object needed for Storm tracing.

To use firstly make your app and then wrap it with this make_app:

>>> app, find_timeline = make_app(app)

Then wrap the returned app with the timeline app (or anything that sets environ['timeline.
timeline']):

>>> app = timeline.wsgi.make_app(app)

Finally install a timeline tracer to capture Storm queries:

>>> install_tracer(TimelineTracer(find_timeline))

Returns A wrapped WSGI app and a timeline factory function for use with TimelineTracer.

4.7. Miscellaneous 81

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Storm Documentation

82 Chapter 4. API

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

83

Storm Documentation

84 Chapter 5. Indices and tables

Python Module Index

s
storm.base, 36
storm.cache, 76
storm.database, 66
storm.databases.postgres, 70
storm.databases.sqlite, 72
storm.event, 74
storm.exceptions, 77
storm.expr, 61
storm.info, 79
storm.properties, 36
storm.references, 45
storm.sqlobject, 59
storm.store, 29
storm.testing, 79
storm.tracer, 74
storm.tz, 80
storm.uri, 81
storm.variables, 48
storm.wsgi, 81
storm.xid, 73

85

Storm Documentation

86 Python Module Index

Index

A
Add (class in storm.expr), 64
add() (storm.cache.Cache method), 76
add() (storm.cache.GenerationalCache method), 77
add() (storm.store.Store method), 31
add_class() (storm.properties.PropertyRegistry

method), 45
add_flush_order() (storm.store.Store method), 31
add_property() (storm.properties.PropertyRegistry

method), 45
add_reserved_words() (storm.expr.Compile

method), 61
Alias (class in storm.expr), 63
And (class in storm.expr), 64
AND (in module storm.sqlobject), 59
any() (storm.store.ResultSet method), 33
Asc (class in storm.expr), 66
AutoReload (in module storm.store), 36
autoreload() (storm.store.Store method), 31
AutoTables (class in storm.expr), 66
Avg (class in storm.expr), 65
avg() (storm.store.ResultSet method), 34

B
BaseStatementTracer (class in storm.tracer), 75
begin() (storm.database.Connection method), 68
begin() (storm.store.Store method), 29
BinaryExpr (class in storm.expr), 62
BinaryOper (class in storm.expr), 63
block_access (class in storm.store), 33
block_access() (storm.database.Connection

method), 67
block_access() (storm.store.Store method), 32
block_implicit_flushes() (storm.store.Store

method), 32
Bool (class in storm.properties), 37
BoolCol (class in storm.sqlobject), 60
BoolVariable (class in storm.variables), 50

build_raw_cursor() (storm.database.Connection
method), 68

build_tables() (in module storm.expr), 62
Bytes (class in storm.properties), 39
BytesVariable (class in storm.variables), 53

C
Cache (class in storm.cache), 76
cached() (storm.store.ResultSet method), 35
CaptureTracer (class in storm.testing), 79
Case (class in storm.databases.postgres), 70
Cast (class in storm.expr), 65
checkpoint() (storm.variables.Variable method), 49
ClassAlias (class in storm.info), 79
ClassInfo (class in storm.info), 79
ClassInfoError, 77
clear() (storm.cache.Cache method), 76
clear() (storm.cache.GenerationalCache method), 77
clear() (storm.properties.PropertyRegistry method),

45
close() (storm.database.Connection method), 68
close() (storm.database.Result method), 66
close() (storm.store.Store method), 29
ClosedError, 77
Coalesce (class in storm.expr), 65
Column (class in storm.expr), 62
commit() (storm.database.Connection method), 68
commit() (storm.databases.sqlite.SQLiteConnection

method), 73
commit() (storm.store.Store method), 30
ComparableExpr (class in storm.expr), 62
Compile (class in storm.expr), 61
compile_cast() (in module storm.expr), 65
compile_currval() (in module

storm.databases.postgres), 70
CompileError, 77
CompilePython (class in storm.expr), 61
CompoundExpr (class in storm.expr), 62
CompoundOper (class in storm.expr), 63
config() (storm.store.ResultSet method), 33

87

Storm Documentation

connect() (storm.database.Database method), 69
Connection (class in storm.database), 67
connection_commit() (storm.tracer.TimeoutTracer

method), 75
connection_factory (storm.database.Database at-

tribute), 69
connection_factory

(storm.databases.postgres.Postgres attribute),
71

connection_factory
(storm.databases.sqlite.SQLite attribute),
73

connection_raw_execute()
(storm.tracer.TimeoutTracer method), 75

connection_raw_execute_error()
(storm.databases.postgres.PostgresTimeoutTracer
method), 71

connection_raw_execute_error()
(storm.tracer.TimeoutTracer method), 75

connection_rollback()
(storm.tracer.TimeoutTracer method), 75

ConnectionBlockedError, 79
CONTAINSSTRING (class in storm.sqlobject), 60
Context (class in storm.expr), 61
copy() (storm.store.ResultSet method), 33
copy() (storm.variables.Variable method), 49
Count (class in storm.expr), 64
count() (storm.store.ResultSet method), 34
create_child() (storm.expr.Compile method), 61
create_database() (in module storm.database), 70
create_from_uri (in module

storm.databases.postgres), 71
create_from_uri (in module

storm.databases.sqlite), 73
currval (class in storm.databases.postgres), 70

D
Database (class in storm.database), 69
DatabaseError, 78
DatabaseModuleError, 78
DataError, 78
Date (class in storm.properties), 41
DateCol (class in storm.sqlobject), 60
DateTime (class in storm.properties), 40
DateTimeVariable (class in storm.variables), 54
DateVariable (class in storm.variables), 55
Decimal (class in storm.properties), 38
DecimalVariable (class in storm.variables), 52
Delete (class in storm.expr), 62
delete() (storm.variables.Variable method), 49
Desc (class in storm.expr), 66
DESC (in module storm.sqlobject), 59
difference() (storm.store.ResultSet method), 35
DisconnectionError, 78

Distinct (class in storm.expr), 63
Div (class in storm.expr), 64
dst() (storm.tz.tzfile method), 80
dst() (storm.tz.tzlocal method), 80
dst() (storm.tz.tzoffset method), 80
dst() (storm.tz.tzrange method), 81
dst() (storm.tz.tzutc method), 80

E
emit() (storm.event.EventSystem method), 74
EmptyResultSet (class in storm.store), 32
Enum (class in storm.properties), 44
EnumVariable (class in storm.variables), 58
Eq (class in storm.expr), 63
Error, 78
EventSystem (class in storm.event), 74
Except (class in storm.expr), 64
execute() (storm.database.Connection method), 68
execute() (storm.databases.postgres.PostgresConnection

method), 71
execute() (storm.store.Store method), 29
Exists (class in storm.expr), 65
Expr (class in storm.expr), 62
ExprError, 77

F
FeatureError, 78
find() (storm.store.ResultSet method), 35
find() (storm.store.Store method), 30
find() (storm.store.TableSet method), 35
first() (storm.store.ResultSet method), 33
Float (class in storm.properties), 38
FloatCol (class in storm.sqlobject), 60
FloatVariable (class in storm.variables), 51
flush() (storm.store.Store method), 32
from_database() (storm.database.Result static

method), 67
from_database() (storm.databases.sqlite.SQLiteResult

static method), 72
FromExpr (class in storm.expr), 63
Func (class in storm.expr), 65
FuncExpr (class in storm.expr), 64

G
Ge (class in storm.expr), 64
GenerationalCache (class in storm.cache), 76
get() (storm.properties.PropertyRegistry method), 45
get() (storm.store.Store method), 30
get() (storm.variables.Variable method), 48
get_all() (storm.database.Result method), 67
get_cached() (storm.cache.Cache method), 76
get_cached() (storm.cache.GenerationalCache

method), 77
get_database() (storm.store.Store method), 29

88 Index

Storm Documentation

get_insert_identity() (storm.database.Result
method), 67

get_insert_identity()
(storm.databases.postgres.PostgresResult
method), 71

get_insert_identity()
(storm.databases.sqlite.SQLiteResult method),
72

get_lazy() (storm.variables.Variable method), 48
get_one() (storm.database.Result method), 67
get_remaining_time()

(storm.tracer.TimeoutTracer method), 75
get_select_expr() (storm.store.EmptyResultSet

method), 32
get_select_expr() (storm.store.ResultSet method),

34
get_state() (storm.variables.ListVariable method),

58
get_state() (storm.variables.Variable method), 49
get_uri() (storm.database.Database method), 69
group_by() (storm.store.ResultSet method), 34
Gt (class in storm.expr), 64

H
has_changed() (storm.variables.Variable method),

49
having() (storm.store.ResultSet method), 34
hook() (storm.event.EventSystem method), 74

I
In (class in storm.expr), 64
IN (in module storm.sqlobject), 59
Insert (class in storm.expr), 62
Int (class in storm.properties), 37
IntCol (class in storm.sqlobject), 60
IntegrityError, 78
InterfaceError, 78
InternalError, 78
Intersect (class in storm.expr), 64
intersection() (storm.store.ResultSet method), 35
IntervalCol (class in storm.sqlobject), 60
IntVariable (class in storm.variables), 51
invalidate() (storm.store.Store method), 31
is_defined() (storm.variables.Variable method), 49
is_disconnection_error()

(storm.database.Connection method), 69
is_disconnection_error()

(storm.databases.postgres.PostgresConnection
method), 71

is_empty() (storm.sqlobject.SQLObjectResultSet
method), 60

is_empty() (storm.store.ResultSet method), 33
is_safe_token() (in module storm.expr), 66

J
Join (class in storm.expr), 63
JoinExpr (class in storm.expr), 63
JSON (class in storm.databases.postgres), 72
JSON (class in storm.properties), 43
JSONElement (class in storm.databases.postgres), 72
JSONTextElement (class in

storm.databases.postgres), 72
JSONVariable (class in storm.databases.postgres), 72
JSONVariable (class in storm.variables), 58

L
last() (storm.store.ResultSet method), 33
LazyValue (class in storm.variables), 48
Le (class in storm.expr), 64
LeftJoin (class in storm.expr), 63
Like (class in storm.expr), 64
LIKE (in module storm.sqlobject), 59
List (class in storm.properties), 44
ListVariable (class in storm.variables), 58
LostObjectError, 78
Lower (class in storm.expr), 65
LShift (class in storm.expr), 64
Lt (class in storm.expr), 64

M
make_app() (in module storm.wsgi), 81
make_dsn() (in module storm.databases.postgres), 71
Max (class in storm.expr), 65
max() (storm.store.ResultSet method), 34
Min (class in storm.expr), 65
min() (storm.store.ResultSet method), 34
Mod (class in storm.expr), 64
Mul (class in storm.expr), 64

N
name (storm.expr.Func attribute), 65
NamedFunc (class in storm.expr), 65
NaturalJoin (class in storm.expr), 63
NaturalLeftJoin (class in storm.expr), 63
NaturalRightJoin (class in storm.expr), 63
Ne (class in storm.expr), 63
Neg (class in storm.expr), 65
NonAssocBinaryOper (class in storm.expr), 63
NoneError, 77
NoStoreError, 78
Not (class in storm.expr), 65
NOT (in module storm.sqlobject), 59
NoTableError, 77
NotFlushedError, 78
NotOneError, 78
NotSupportedError, 78

Index 89

Storm Documentation

O
ObjectInfo (class in storm.info), 79
of() (storm.store.Store static method), 29
one() (storm.store.ResultSet method), 33
OperationalError, 78
Or (class in storm.expr), 64
OR (in module storm.sqlobject), 59
order_by() (storm.store.ResultSet method), 34
OrderLoopError, 78

P
parse_get() (storm.variables.DecimalVariable static

method), 53
parse_get() (storm.variables.EnumVariable

method), 58
parse_get() (storm.variables.ListVariable method),

58
parse_get() (storm.variables.UUIDVariable

method), 57
parse_get() (storm.variables.Variable method), 49
parse_set() (storm.variables.BoolVariable method),

50
parse_set() (storm.variables.BytesVariable method),

53
parse_set() (storm.variables.DateTimeVariable

method), 54
parse_set() (storm.variables.DateVariable method),

55
parse_set() (storm.variables.DecimalVariable static

method), 52
parse_set() (storm.variables.EnumVariable

method), 58
parse_set() (storm.variables.FloatVariable method),

52
parse_set() (storm.variables.IntVariable method),

51
parse_set() (storm.variables.ListVariable method),

58
parse_set() (storm.variables.TimeDeltaVariable

method), 56
parse_set() (storm.variables.TimeVariable method),

56
parse_set() (storm.variables.UnicodeVariable

method), 54
parse_set() (storm.variables.UUIDVariable

method), 57
parse_set() (storm.variables.Variable method), 50
Pickle (class in storm.properties), 43
PickleVariable (class in storm.variables), 58
pop() (storm.expr.State method), 61
Postgres (class in storm.databases.postgres), 71
PostgresConnection (class in

storm.databases.postgres), 71

PostgresResult (class in storm.databases.postgres),
70

PostgresTimeoutTracer (class in
storm.databases.postgres), 71

PrefixExpr (class in storm.expr), 65
prepare() (storm.database.Connection method), 68
prepare() (storm.store.Store method), 30
preset_primary_key()

(storm.database.Connection method), 69
ProgrammingError, 78
Property (class in storm.properties), 36
PropertyPathError, 77
PropertyRegistry (class in storm.properties), 45
Proxy (class in storm.references), 47
Proxy.RemoteProp (class in storm.references), 47
push() (storm.expr.State method), 61

R
raw_connect() (storm.database.Database method),

69
raw_connect() (storm.databases.postgres.Postgres

method), 71
raw_connect() (storm.databases.sqlite.SQLite

method), 73
raw_execute() (storm.database.Connection

method), 69
raw_execute() (storm.databases.sqlite.SQLiteConnection

method), 73
RawStr (in module storm.properties), 40
RawStrVariable (in module storm.variables), 54
recover() (storm.database.Connection method), 68
Reference (class in storm.references), 45
ReferenceSet (class in storm.references), 46
register_scheme() (in module storm.database), 69
reload() (storm.store.Store method), 31
remove() (storm.cache.Cache method), 76
remove() (storm.cache.GenerationalCache method),

77
remove() (storm.store.ResultSet method), 34
remove() (storm.store.Store method), 31
remove_flush_order() (storm.store.Store

method), 32
reset() (storm.store.Store method), 31
Result (class in storm.database), 66
result_factory (storm.database.Connection at-

tribute), 67
result_factory (storm.databases.postgres.PostgresConnection

attribute), 71
result_factory (storm.databases.sqlite.SQLiteConnection

attribute), 73
ResultSet (class in storm.store), 33
Returning (class in storm.databases.postgres), 70
RightJoin (class in storm.expr), 63
rollback() (storm.database.Connection method), 68

90 Index

Storm Documentation

rollback() (storm.databases.sqlite.SQLiteConnection
method), 73

rollback() (storm.store.Store method), 30
Row (class in storm.expr), 65
rowcount (storm.database.Result attribute), 67
RShift (class in storm.expr), 64

S
Select (class in storm.expr), 62
Sequence (class in storm.expr), 66
set() (storm.store.ResultSet method), 35
set() (storm.variables.Variable method), 49
set_size() (storm.cache.Cache method), 76
set_size() (storm.cache.GenerationalCache

method), 77
set_state() (storm.variables.ListVariable method),

59
set_state() (storm.variables.Variable method), 49
set_statement_timeout()

(storm.databases.postgres.PostgresTimeoutTracer
method), 71

set_statement_timeout()
(storm.tracer.TimeoutTracer method), 75

set_variable() (storm.database.Result static
method), 67

set_variable() (storm.databases.sqlite.SQLiteResult
static method), 72

SetExpr (class in storm.expr), 64
SimpleProperty (class in storm.properties), 36
SingleJoin (class in storm.sqlobject), 60
SQL (class in storm.expr), 66
SQLConstant (in module storm.sqlobject), 59
SQLite (class in storm.databases.sqlite), 73
SQLiteConnection (class in storm.databases.sqlite),

73
SQLiteResult (class in storm.databases.sqlite), 72
SQLMultipleJoin (class in storm.sqlobject), 60
SQLObjectBase (class in storm.sqlobject), 59
SQLObjectMoreThanOneResultError (in mod-

ule storm.sqlobject), 59
SQLObjectNotFound, 59
SQLObjectResultSet (class in storm.sqlobject), 59
SQLRaw (class in storm.expr), 66
SQLRelatedJoin (in module storm.sqlobject), 60
SQLToken (class in storm.expr), 66
State (class in storm.expr), 61
Store (class in storm.store), 29
StoreError, 78
Storm (class in storm.base), 36
storm.base (module), 36
storm.cache (module), 76
storm.database (module), 66
storm.databases.postgres (module), 70
storm.databases.sqlite (module), 72

storm.event (module), 74
storm.exceptions (module), 77
storm.expr (module), 61
storm.info (module), 79
storm.properties (module), 36
storm.references (module), 45
storm.sqlobject (module), 59
storm.store (module), 29
storm.testing (module), 79
storm.tracer (module), 74
storm.tz (module), 80
storm.uri (module), 81
storm.variables (module), 48
storm.wsgi (module), 81
storm.xid (module), 73
StormError, 77
StringCol (class in storm.sqlobject), 60
Sub (class in storm.expr), 64
SuffixExpr (class in storm.expr), 65
Sum (class in storm.expr), 65
sum() (storm.store.ResultSet method), 34

T
Table (class in storm.expr), 63
TableSet (class in storm.store), 35
Time (class in storm.properties), 41
TimeDelta (class in storm.properties), 42
TimeDeltaVariable (class in storm.variables), 56
TimelineTracer (class in storm.tracer), 75
TimeoutError, 78
TimeoutTracer (class in storm.tracer), 74
TimeVariable (class in storm.variables), 55
to_database() (storm.database.Connection static

method), 68
to_database() (storm.databases.postgres.PostgresConnection

method), 71
to_database() (storm.databases.sqlite.SQLiteConnection

static method), 73
tzfile (class in storm.tz), 80
tzlocal (class in storm.tz), 80
tzname() (storm.tz.tzfile method), 80
tzname() (storm.tz.tzlocal method), 80
tzname() (storm.tz.tzoffset method), 80
tzname() (storm.tz.tzrange method), 81
tzname() (storm.tz.tzutc method), 80
tzoffset (class in storm.tz), 80
tzrange (class in storm.tz), 80
tzstr (class in storm.tz), 81
tzutc (class in storm.tz), 80

U
unblock_access() (storm.database.Connection

method), 68
unblock_access() (storm.store.Store method), 32

Index 91

Storm Documentation

unblock_implicit_flushes() (storm.store.Store
method), 32

unhook() (storm.event.EventSystem method), 74
Unicode (class in storm.properties), 40
UnicodeVariable (class in storm.variables), 54
Union (class in storm.expr), 64
union() (storm.store.ResultSet method), 35
UnorderedError, 78
Update (class in storm.expr), 62
Upper (class in storm.expr), 65
URI (class in storm.uri), 81
URIError, 77
using() (storm.store.Store method), 30
UtcDateTimeCol (class in storm.sqlobject), 60
utcoffset() (storm.tz.tzfile method), 80
utcoffset() (storm.tz.tzlocal method), 80
utcoffset() (storm.tz.tzoffset method), 80
utcoffset() (storm.tz.tzrange method), 80
utcoffset() (storm.tz.tzutc method), 80
UUID (class in storm.properties), 42
UUIDVariable (class in storm.variables), 57

V
values() (storm.store.ResultSet method), 34
Variable (class in storm.variables), 48
variable_class (storm.databases.postgres.JSON at-

tribute), 72
variable_class (storm.properties.Bool attribute),

37
variable_class (storm.properties.Bytes attribute),

39
variable_class (storm.properties.Date attribute),

41
variable_class (storm.properties.DateTime at-

tribute), 41
variable_class (storm.properties.Decimal at-

tribute), 39
variable_class (storm.properties.Enum attribute),

45
variable_class (storm.properties.Float attribute),

38
variable_class (storm.properties.Int attribute), 38
variable_class (storm.properties.JSON attribute),

44
variable_class (storm.properties.List attribute), 44
variable_class (storm.properties.Pickle attribute),

43
variable_class (storm.properties.Time attribute),

42
variable_class (storm.properties.TimeDelta at-

tribute), 42
variable_class (storm.properties.Unicode at-

tribute), 40

variable_class (storm.properties.UUID attribute),
43

VariableFactory (in module storm.variables), 48

W
Warning, 78
when() (storm.expr.Compile method), 61
wrap_exceptions() (in module storm.exceptions),

79
WrongStoreError, 78

X
Xid (class in storm.xid), 73

92 Index

	Tutorial
	Importing
	Basic definition
	Creating a database and the store
	Creating an object
	The store of an object
	Finding an object
	Caching behavior
	Flushing
	Changing objects with the Store
	Committing
	Rolling back
	Constructors
	References and subclassing
	Many-to-one reference sets
	Many-to-many reference sets and composed keys
	Joins
	Sub-selects
	Ordering and limiting results
	Multiple types with one query
	The Storm base class
	Loading hook
	Executing expressions
	Auto-reloading values
	Expression values
	Aliases
	Debugging
	Much more!

	Infoheritance
	Defining a sample model
	The infoheritance pattern
	Registering info classes
	Creating info classes
	Retrieving info classes
	In-memory info objects

	Zope integration
	Getting stores
	Committing transactions
	Aborting transactions
	ZCML
	Security Wrappers
	ResultSet interfaces

	API
	Locals
	Store
	Defining tables and columns
	Expressions
	Databases
	Hooks and events
	Miscellaneous

	Indices and tables
	Python Module Index
	Index

